Download Data Science And Predictive Analytics - eBooks (PDF)

Data Science And Predictive Analytics


Data Science And Predictive Analytics
DOWNLOAD

Download Data Science And Predictive Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science And Predictive Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science And Predictive Analytics


Data Science And Predictive Analytics
DOWNLOAD
Author : Ivo D. Dinov
language : en
Publisher: Springer Nature
Release Date : 2023-02-16

Data Science And Predictive Analytics written by Ivo D. Dinov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-16 with Computers categories.


This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.



Data Science


Data Science
DOWNLOAD
Author : Vijay Kotu
language : en
Publisher: Morgan Kaufmann
Release Date : 2018-11-27

Data Science written by Vijay Kotu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-27 with Computers categories.


Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You'll be able to: - Gain the necessary knowledge of different data science techniques to extract value from data. - Master the concepts and inner workings of 30 commonly used powerful data science algorithms. - Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... - Contains fully updated content on data science, including tactics on how to mine business data for information - Presents simple explanations for over twenty powerful data science techniques - Enables the practical use of data science algorithms without the need for programming - Demonstrates processes with practical use cases - Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language - Describes the commonly used setup options for the open source tool RapidMiner



Marketing Data Science


Marketing Data Science
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2015-05-02

Marketing Data Science written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-02 with Business & Economics categories.


Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.



Predictive Analytics


Predictive Analytics
DOWNLOAD
Author : Richard Hurley
language : en
Publisher:
Release Date : 2019-12-30

Predictive Analytics written by Richard Hurley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-30 with categories.


If you want to learn about predictive analytics without having to read a boring textbook, then keep reading... Companies are collecting more data from ever. With the ease of collecting all that data, all the different sources where you can receive the data, and the inexpensive storage, it makes sense to collect as much data as possible. But without a good analysis of that data, and without some time to really figure out what trends and insights are inside all of it, that data becomes worthless. This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future. This guidebook is going to look at predictive analytics, and some of the topics we will explore concerning this topic include: The basics of predictive analysis. How to predict events that are going to happen in the future with big data and data mining. How to predict events that are going to happen in the future with the help of data analysis and statistics. A look at machine learning and how this process can help make predictions. How to avoid prediction traps, avoid bias, and make the best decisions with this analysis. Some of the top reasons to implement this kind of analysis in your business. The steps you can take to create your own predictive analysis model. And much, much more! Working on predictive analytics is going to be one of the best ways that your business can use the data you have to look more deeply inside, and sort through the different predictions you can make. Click the "add to cart" button to start your learning!



Predictive Analytics And Data Mining


Predictive Analytics And Data Mining
DOWNLOAD
Author : Vijay Kotu
language : en
Publisher: Morgan Kaufmann
Release Date : 2014-11-27

Predictive Analytics And Data Mining written by Vijay Kotu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Computers categories.


Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples



Analytics


Analytics
DOWNLOAD
Author : Daniel Covington
language : en
Publisher: Lulu.com
Release Date : 2019-08-13

Analytics written by Daniel Covington and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-13 with Business & Economics categories.


SO MANY PEOPLE DREAM OF BECOMING THEIR OWN BOSS OR SUCCEEDING IN THEIR CHOSEN PROFESSION, AND WITH THE RESOURCES AVAILABLE TODAY, MORE ENTREPRENEURS AND PROFESSIONALS ARE ACHIEVING GREAT SUCCESS! HOWEVER, SUCCESS SHOULD BE DEFINED FOR THE LONG TERM, AND AS OPPORTUNITIES START TO GROW, SO DOES THE COMPETITION. Getting your business up and running or starting on your career path is one thing, but have a sustainable business or career is completely another. Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. DonÕt you wish to have the power to know what your target consumers are thinking? WonÕt you want to have a preview of what future trends to expect in the market you are in? Well, this book is just the one you need. This book will teach you, in simple and easy-to-understand terms, how to take advantage of data from your daily operations and make such data a powerful tool that can influence how well your business does over time.



Modeling Techniques In Predictive Analytics With Python And R


Modeling Techniques In Predictive Analytics With Python And R
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29

Modeling Techniques In Predictive Analytics With Python And R written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more



Web And Network Data Science


Web And Network Data Science
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-12-19

Web And Network Data Science written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-19 with Business & Economics categories.


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.



Data Analytics


Data Analytics
DOWNLOAD
Author : Arthur Zhang
language : en
Publisher:
Release Date : 2017-03-10

Data Analytics written by Arthur Zhang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-10 with categories.


The Ultimate Guide to Data Science and Analytics This practical guide is accessible for the reader who is relatively new to the field of data analytics, while still remaining robust and detailed enough to function as a helpful guide to those already experienced in the field. Data science is expanding in breadth and growing rapidly in importance as technology rapidly integrates ever deeper into business and our daily lives. The need for a succinct and informal guide to this important field has never been greater. RIGHT NOW you can get ahead of the pack! This coherent guide covers everything you need to know on the subject of data science, with numerous concrete examples, and invites the reader to dive further into this exciting field. Students from a variety of academic backgrounds, including computer science, business, engineering, statistics, anyone interested in discovering new ideas and insights derived from data can use this as a textbook. At the same time, professionals such as managers, executives, professors, analysts, doctors, developers, computer scientists, accountants, and others can use this book to make a quantum leap in their knowledge of big data in a matter of only a few hours. Learn how to understand this field and uncover actionable insights from data through analytics. UNDERSTAND the following key insights when you grab your copy today: WHY DATA IS IMPORTANT TO YOUR BUSINESS DATA SOURCES HOW DATA CAN IMPROVE YOUR BUSINESS HOW BIG DATA CREATES VALUE DEVELOPMENT OF BIG DATA CONSIDERING THE PROS AND CONS OF BIG DATA BIG DATA FOR SMALL BUSINESSES THE COST EFFECTIVENESS OF DATA ANALYTICS WHAT TO CONSIDER WHEN PREPARING FOR A NEW BIG DATA SOLUTION DATA GATHERING DATA SCRUBBING DESCRIPTIVE ANALYTICS INFERENTIAL STATISTICS PREDICTIVE ANALYTICS PREDICTIVE MODELS DESCRIPTIVE MODELING DECISION MODELING PREDICTIVE ANALYSIS METHODS MACHINE LEARNING TECHNIQUES DATA ANALYSIS WITH "R" ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT (CRM) THE USE OF PREDICTIVE ANALYTICS IN HEALTHCARE THE USE OF PREDICTIVE ANALYTICS IN THE FINANCIAL SECTOR PREDICTIVE ANALYTICS & BUSINESS MARKETING STRATEGIES FRAUD DETECTION SHIPPING BUSINESS CONTROLLING RISK FACTORS THE REVOLUTION OF PREDICTIVE ANALYSIS ACROSS A VARIETY OF INDUSTRIES DESCRIPTIVE AND PREDICTIVE ANALYSIS CRUCIAL FACTORS FOR DATA ANALYSIS RESOURCES AND FLEXIBLE TECHNICAL STRUCTURE BUSINESS INTELLIGENCE HYPER TARGETING WHAT IS DATA SCIENCE? DATA MUNGING DEMYSTIFYING DATA SCIENCE SECURITY RISKS TODAY BIG DATA AND IMPACTS ON EVERYDAY LIFE FINANCE AND BIG DATA APPLYING SENTIMENT ANALYSIS RISK EVALUATION AND THE DATA SCIENTIST THE FINANCE INDUSTRY AND REAL-TIME ANALYTICS HOW BIG DATA IS BENEFICIAL TO THE CUSTOMER CUSTOMER SEGMENTATION IS GOOD FOR BUSINESS USE OF BIG DATA BENEFITS IN MARKETING GOOGLE TRENDS THE PROFILE OF A PERFECT CUSTOMER LEAD SCORING IN PREDICTIVE ANALYSIS EVALUATING THE WORTH OF LIFETIME VALUE BIG DATA ADVANTAGES AND DISADVANTAGES MAKING COMPARISONS WITH COMPETITORS DATA SCIENCE IN THE TRAVEL SECTOR SAFETY ENHANCEMENTS THANKS TO BIG DATA BIG DATA AND AGRICULTURE BIG DATA AND LAW ENFORCEMENT THE USE OF BIG DATA IN THE PUBLIC SECTOR BIG DATA AND GAMING PRESCRIPTIVE ANALYTICS GOOGLE'S "SELF-DRIVING CAR" AND MUCH MORE! WANT MORE? Scroll up and grab this helpful guide toady!



Data Science Using Python And R


Data Science Using Python And R
DOWNLOAD
Author : Chantal D. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-21

Data Science Using Python And R written by Chantal D. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-21 with Computers categories.


Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.