Data Analytics
DOWNLOAD
Download Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Analytics And Big Data
DOWNLOAD
Author : Soraya Sedkaoui
language : en
Publisher: John Wiley & Sons
Release Date : 2018-07-31
Data Analytics And Big Data written by Soraya Sedkaoui and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.
The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Data Analytics
DOWNLOAD
Author : Byron Francis
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-09-12
Data Analytics written by Byron Francis and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-12 with categories.
Data Analytics - The Complete Beginner's Guide! The book is an unstructured data mining quest, which takes the reader through different features of unstructured data mining while unfolding the practical facets of Big Data. It emphasizes more on machine learning and mining methods required for processing and decision-making. The text begins with the introduction to the subject and explores the concept of data mining methods and models along with the applications. It then goes into detail on other aspects of Big Data analytics, such as clustering, incremental learning, multi-label association and knowledge representation. The readers are also made familiar with business analytics to create value. The book finally ends with a discussion on the areas where research can be explored. The book is designed for the senior level undergraduate, and postgraduate students of computer science and engineering. Here Is A Preview Of What Inside The Book: Big data Statistics in practice Descriptive and Inferential Statistics Parameters and Statistics Statistical data analysis Variables SUMMARY OF THE GENERAL METHOD OF DECISION ANALYSIS ANOTHER DECISION TREE MODEL AND ITS ANALYSIS Making Data Work for You Predictive Modeling Techniques Take Action Today and Data Analytics in no time! Click the "Buy now with 1-Click" to the right and get this guide immediately.
Practical Big Data Analytics
DOWNLOAD
Author : Nataraj Dasgupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-15
Practical Big Data Analytics written by Nataraj Dasgupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.
Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Data Analytics For Absolute Beginners A Deconstructed Guide To Data Literacy
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher:
Release Date : 2019-07-21
Data Analytics For Absolute Beginners A Deconstructed Guide To Data Literacy written by Oliver Theobald and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-21 with categories.
While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence
Data Analytics Basics
DOWNLOAD
Author : Simplilearn
language : en
Publisher: IndraStra Whitepapers
Release Date : 2020-12-14
Data Analytics Basics written by Simplilearn and has been published by IndraStra Whitepapers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.
Data analytics is increasingly becoming a key element in shaping a company’s business strategy. Today, data influences every decision made by an organization, and this is driving the wide-scale adoption of data analytics, including machine learning technologies and artificial intelligence solutions. The heightened focus is propelling a surge in data analytics spending, reflected in various studies conducted by leading market research firms. The field of data analytics offers some amazing salaries and is not only the hottest IT job, but it is also one of the best-paying jobs in the world. This guide aims at providing the readers with everything they need to know about the data analytics field, basic terminologies, key concepts, real-life use cases, skills you must master in order to scale up your career, and training and certifications you might need to reach your dream job.
Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14
Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Data Science And Analytics With Python R And Spss Programming
DOWNLOAD
Author : V.K. Jain
language : en
Publisher: KHANNA PUBLISHING HOUSE
Release Date :
Data Science And Analytics With Python R And Spss Programming written by V.K. Jain and has been published by KHANNA PUBLISHING HOUSE this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
The Book has been written completely as per AICTE recommended syllabus on "Data Sciences". SALIENT FEATURES OF THE BOOK: Explains how data is collected, managed and stored for data science. With complete courseware for understand the key concepts in data science including their real-world applications and the toolkit used by data scientists. Implement data collection and management. Provided with state of the arts subjectwise. With all required tutorials on R, Python and Bokeh, Anaconda, IBM SPSS-21 and Matplotlib.
A General Introduction To Data Analytics
DOWNLOAD
Author : João Moreira
language : en
Publisher: John Wiley & Sons
Release Date : 2018-07-02
A General Introduction To Data Analytics written by João Moreira and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-02 with Mathematics categories.
A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.
Data Science And Big Data Analytics
DOWNLOAD
Author : EMC Education Services
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-27
Data Science And Big Data Analytics written by EMC Education Services and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-27 with Computers categories.
Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Big Data Analytics And Cloud Computing
DOWNLOAD
Author : Syed Thouheed Ahmed
language : en
Publisher: MileStone Research Publications
Release Date : 2021-09-05
Big Data Analytics And Cloud Computing written by Syed Thouheed Ahmed and has been published by MileStone Research Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-05 with Computers categories.
Big data analytics and cloud computing is the fastest growing technologies in current era. This text book serves as a purpose in providing an understanding of big data principles and framework at the beginner?s level. The text book covers various essential concepts of big-data analytics and processing tools such as HADOOP and YARN. The Textbook covers an analogical understanding on bridging cloud computing with big-data technologies with essential cloud infrastructure protocol and ecosystem concepts. PART I: Hadoop Distributed File System Basics, Running Example Programs and Benchmarks, Hadoop MapReduce Framework Essential Hadoop Tools, Hadoop YARN Applications, Managing Hadoop with Apache Ambari, Basic Hadoop Administration Procedures PART II: Introduction to Cloud Computing: Origins and Influences, Basic Concepts and Terminology, Goals and Benefits, Risks and Challenges. Fundamental Concepts and Models: Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models. Cloud Computing Technologies:Broadband networks and internet architecture, data center technology, virtualization technology, web technology, multi-tenant technology, service Technology Cloud Infrastructure Mechanisms:Logical Network Perimeter, Virtual Server, Cloud Storage Device, Cloud Usage Monitor, Resource Replication, Ready-made environment