Predictive Analytics
DOWNLOAD
Download Predictive Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Predictive Analytics
DOWNLOAD
Author : Richard Hurley
language : en
Publisher:
Release Date : 2019-12-30
Predictive Analytics written by Richard Hurley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-30 with categories.
If you want to learn about predictive analytics without having to read a boring textbook, then keep reading... Companies are collecting more data from ever. With the ease of collecting all that data, all the different sources where you can receive the data, and the inexpensive storage, it makes sense to collect as much data as possible. But without a good analysis of that data, and without some time to really figure out what trends and insights are inside all of it, that data becomes worthless. This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future. This guidebook is going to look at predictive analytics, and some of the topics we will explore concerning this topic include: The basics of predictive analysis. How to predict events that are going to happen in the future with big data and data mining. How to predict events that are going to happen in the future with the help of data analysis and statistics. A look at machine learning and how this process can help make predictions. How to avoid prediction traps, avoid bias, and make the best decisions with this analysis. Some of the top reasons to implement this kind of analysis in your business. The steps you can take to create your own predictive analysis model. And much, much more! Working on predictive analytics is going to be one of the best ways that your business can use the data you have to look more deeply inside, and sort through the different predictions you can make. Click the "add to cart" button to start your learning!
Predictive Analytics For Dummies
DOWNLOAD
Author : Dr. Anasse Bari
language : en
Publisher: John Wiley & Sons
Release Date : 2014-03-24
Predictive Analytics For Dummies written by Dr. Anasse Bari and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-24 with Business & Economics categories.
Predict the future! This practical guide will help you use Big Data and technology to discover real-world insights, define projects, and help you create goals.
Data Science And Predictive Analytics
DOWNLOAD
Author : Ivo D. Dinov
language : en
Publisher: Springer Nature
Release Date : 2023-02-16
Data Science And Predictive Analytics written by Ivo D. Dinov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-16 with Computers categories.
This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.
Applying Predictive Analytics
DOWNLOAD
Author : Richard V. McCarthy
language : en
Publisher: Springer
Release Date : 2019-03-12
Applying Predictive Analytics written by Richard V. McCarthy and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Technology & Engineering categories.
This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes.
Predictive Analytics For Data Driven Decision Making
DOWNLOAD
Author : L. Ashok Kumar
language : en
Publisher:
Release Date : 2022
Predictive Analytics For Data Driven Decision Making written by L. Ashok Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Business & Economics categories.
"Predictive analytics is an evolving field and has applications across all domains and sectors. This book will introduce to the reader the concept of predictive analytics and cover in detail the predictive analytic models, tools and techniques involved. The book will also cover the applications of predictive analytics in various domains including health care, banking, agriculture, retailing, sports and industries using smart grid and industrial drivers with real world scenarios. This book covers performance improvement and enhancement techniques with the aid of intelligent predictive analytical algorithms to predict future patterns. This would be a handy guide covering all steps from identification of the problem, preparing the data, model building and recommending solutions. Hence, the readers can experience the various types of performance improvement techniques and implement them in their specific domain"--
Applying Predictive Analytics
DOWNLOAD
Author : Richard V. McCarthy
language : en
Publisher: Springer Nature
Release Date : 2022-01-01
Applying Predictive Analytics written by Richard V. McCarthy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-01 with Technology & Engineering categories.
The new edition of this textbook presents a practical, updated approach to predictive analytics for classroom learning. The authors focus on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life examples of how business analytics have been used in various aspects of organizations to solve issues or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. The new edition includes chapters on clusters and associations and text mining to support predictive models. An additional case is also included that can be used with each chapter or as a semester project.
Predictive Analytics For Dummies
DOWNLOAD
Author : Anasse Bari
language : en
Publisher: John Wiley & Sons
Release Date : 2016-09-16
Predictive Analytics For Dummies written by Anasse Bari and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-16 with Business & Economics categories.
Use Big Data and technology to uncover real-world insights You don't need a time machine to predict the future. All it takes is a little knowledge and know-how, and Predictive Analytics For Dummies gets you there fast. With the help of this friendly guide, you'll discover the core of predictive analytics and get started putting it to use with readily available tools to collect and analyze data. In no time, you'll learn how to incorporate algorithms through data models, identify similarities and relationships in your data, and predict the future through data classification. Along the way, you'll develop a roadmap by preparing your data, creating goals, processing your data, and building a predictive model that will get you stakeholder buy-in. Big Data has taken the marketplace by storm, and companies are seeking qualified talent to quickly fill positions to analyze the massive amount of data that are being collected each day. If you want to get in on the action and either learn or deepen your understanding of how to use predictive analytics to find real relationships between what you know and what you want to know, everything you need is a page away! Offers common use cases to help you get started Covers details on modeling, k-means clustering, and more Includes information on structuring your data Provides tips on outlining business goals and approaches The future starts today with the help of Predictive Analytics For Dummies.
Mastering Predictive Analytics With R
DOWNLOAD
Author : Rui Miguel Forte
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-06-17
Mastering Predictive Analytics With R written by Rui Miguel Forte and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-17 with Computers categories.
R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. This book is designed to be both a guide and a reference for moving beyond the basics of predictive modeling. The book begins with a dedicated chapter on the language of models and the predictive modeling process. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real world data sets. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real world data sets and mastered a diverse range of techniques in predictive analytics.
Modeling Techniques In Predictive Analytics
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2013-08-23
Modeling Techniques In Predictive Analytics written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-23 with Business & Economics categories.
Today, successful firms compete and win based on analytics. Modeling Techniques in Predictive Analytics brings together all the concepts, techniques, and R code you need to excel in any role involving analytics. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business challenges and business cases, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and even spatio-temporal data. For each problem, Miller explains why the problem matters, what data is relevant, how to explore your data once you’ve identified it, and then how to successfully model that data. You’ll learn how to model data conceptually, with words and figures; and then how to model it with realistic R programs that deliver actionable insights and knowledge. Miller walks you through model construction, explanatory variable subset selection, and validation, demonstrating best practices for improving out-of-sample predictive performance. He employs data visualization and statistical graphics in exploring data, presenting models, and evaluating performance. All example code is presented in R, today’s #1 system for applied statistics, statistical research, and predictive modeling; code is set apart from other text so it’s easy to find for those who want it (and easy to skip for those who don’t).
Data Driven Modelling And Predictive Analytics In Business And Finance
DOWNLOAD
Author : Alex Khang
language : en
Publisher: CRC Press
Release Date : 2024-07-24
Data Driven Modelling And Predictive Analytics In Business And Finance written by Alex Khang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-24 with Computers categories.
Data-driven and AI-aided applications are next-generation technologies that can be used to visualize and realize intelligent transactions in finance, banking, and business. These transactions will be enabled by powerful data-driven solutions, IoT technologies, AI-aided techniques, data analytics, and visualization tools. To implement these solutions, frameworks will be needed to support human control of intelligent computing and modern business systems. The power and consistency of data-driven competencies are a critical challenge, and so is developing explainable AI (XAI) to make data-driven transactions transparent. Data- Driven Modelling and Predictive Analytics in Business and Finance covers the need for intelligent business solutions and applications. Explaining how business applications use algorithms and models to bring out the desired results, the book covers: Data-driven modelling Predictive analytics Data analytics and visualization tools AI-aided applications Cybersecurity techniques Cloud computing IoT-enabled systems for developing smart financial systems This book was written for business analysts, financial analysts, scholars, researchers, academics, professionals, and students so they may be able to share and contribute new ideas, methodologies, technologies, approaches, models, frameworks, theories, and practices.