Data Science Using Python And R
DOWNLOAD
Download Data Science Using Python And R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Using Python And R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Data Science Using Python And R
DOWNLOAD
Author : Chantal D. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-20
Data Science Using Python And R written by Chantal D. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-20 with Computers categories.
Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
Python And R For The Modern Data Scientist
DOWNLOAD
Author : Rick Scavetta
language : en
Publisher:
Release Date : 2021
Python And R For The Modern Data Scientist written by Rick Scavetta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. With this book, data scientists from the Python and R communities will learn how to speak the dialects of each language. By recognizing the strengths of working with both, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Boyan Angelov and Rick Scavetta explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. Not only will you learn how to use Python and R together in real-world settings, but you'll also broaden your knowledge and job opportunities by working as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a real-world case study that demonstrates ways to use these languages together.
Data Science At The Command Line
DOWNLOAD
Author : Jeroen Janssens
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-08-17
Data Science At The Command Line written by Jeroen Janssens and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-17 with Computers categories.
This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, engineers, system administrators, and researchers. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTML, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create your own tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, regression, and classification algorithms Leverage the command line from Python, Jupyter, R, RStudio, and Apache Spark
Python For R Users
DOWNLOAD
Author : Ajay Ohri
language : en
Publisher: John Wiley & Sons
Release Date : 2017-11-03
Python For R Users written by Ajay Ohri and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-03 with Computers categories.
The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.
Data Science Applications Using Python And R
DOWNLOAD
Author : Jeffrey Strickland
language : en
Publisher:
Release Date : 2020-08-23
Data Science Applications Using Python And R written by Jeffrey Strickland and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-23 with categories.
Data Science Applications using Python and R is the second book in a series that began in 2018. This volume is dedicated to text analytics and natural language processing. Using real data, the author leads the reader through the analysis of Tweet sentiment analysis, banking product-group complaint analysis, presidential debate analysis, and more. The book covers text mining, natural language processing (NLP), vectorizing text data, discrete classifiers, bag-of-words (BOW) models, sentiment analysis, and Latent Dirichlet Allocation (LDA). The book offers complete Python and R code with detail explanations. It is designed for use with Jupyter Notebook and R Studio. It also includes notes on Python and R markdown and features full color graphics and text on heavy paper. All data sets used in the book are downloadable from GitHub. Some data can also be customized and download ed from the Federal Consumer Complaint Data Catalog. Finally, each chapter contains practice exercises.
Python Data Analytics And Visualization
DOWNLOAD
Author : Phuong Vo.T.H
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-03-31
Python Data Analytics And Visualization written by Phuong Vo.T.H and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-31 with Computers categories.
Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn Get acquainted with NumPy and use arrays and array-oriented computing in data analysis Process and analyze data using the time-series capabilities of Pandas Understand the statistical and mathematical concepts behind predictive analytics algorithms Data visualization with Matplotlib Interactive plotting with NumPy, Scipy, and MKL functions Build financial models using Monte-Carlo simulations Create directed graphs and multi-graphs Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization—predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan Learning Predictive Analytics with Python, Ashish Kumar Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization
Python And R For The Modern Data Scientist
DOWNLOAD
Author : Rick J. Scavetta
language : en
Publisher: O'Reilly Media
Release Date : 2021-09-30
Python And R For The Modern Data Scientist written by Rick J. Scavetta and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with categories.
Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. With this book, data scientists from the Python and R communities will learn how to speak the dialects of each language. By recognizing the strengths of working with both, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Boyan Angelov and Rick Scavetta explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. Not only will you learn how to use Python and R together in real-world settings, but you'll also broaden your knowledge and job opportunities by working as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a real-world case study that demonstrates ways to use these languages together
Foundations Of Statistics For Data Scientists
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: CRC Press
Release Date : 2021-11-29
Foundations Of Statistics For Data Scientists written by Alan Agresti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-29 with Business & Economics categories.
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. Key Features: Shows the elements of statistical science that are important for students who plan to become data scientists. Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python). Contains nearly 500 exercises. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Practical Data Science Cookbook
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-29
Practical Data Science Cookbook written by Prabhanjan Tattar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-29 with Computers categories.
Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
Practical Business Analytics Using Python And R
DOWNLOAD
Author : Kumar P
language : en
Publisher: Independently Published
Release Date : 2024-11-22
Practical Business Analytics Using Python And R written by Kumar P and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-22 with Computers categories.
In today's fast-paced and data-driven world, businesses are increasingly relying on data to guide their strategies, optimize operations, and stay ahead of the competition. From customer behavior to market trends, every facet of a business generates vast amounts of data-data that holds the key to better decision-making, enhanced performance, and greater profitability. However, unlocking the potential of this data requires more than just access to it; it requires the tools, techniques, and frameworks that allow us to analyze, interpret, and act on the insights it provides. This book, Practical Business Analytics using Python and R: A Hands-On Approach to Business Intelligence, is designed to provide you with the knowledge and practical skills necessary to leverage the power of data in business contexts. Whether you are a business analyst, data scientist, or business manager, this book aims to equip you with a solid foundation in business analytics using Python and R, one of the most powerful and widely used open-source programming languages for statistical analysis and data science. Python and R have become an indispensable tool in the world of analytics. Its flexibility, vast library of packages, and user-friendly environment make it ideal for analyzing and visualizing data, building predictive models, and uncovering trends that drive business success. In this book, we will guide you through the fundamentals of Python and R, as well as advanced techniques in business analytics, with a focus on solving real-world business problems. Who Should Read This Book? This book is aimed at anyone interested in applying business analytics to solve real-world problems using Python and R. It is ideal for: Business Analysts: Who want to enhance their analytical skills and learn how to use Python and R for solving business problems. Data Scientists: Who are looking to expand their knowledge in business contexts and understand how to apply advanced analytics in a business environment. Managers and Decision Makers: Who want to understand how data-driven insights can inform strategic business decisions. Students and Beginners: Who are learning business analytics, data science, or related fields and want a practical guide to applying analytics using Python and R. This book is structured to cater to both beginners and more advanced users. Each chapter begins with a conceptual introduction to the topic, followed by practical, hands-on examples using Python and R. You will find step-by-step instructions, along with clear explanations of the code and the business implications of the results. Whether you are working through the chapters in order or focusing on specific topics, you will gain the skills necessary to apply business analytics in your organization. So, let's dive in and begin unlocking the true potential of your business data with Python and R!