Mastering Machine Learning And Deep Learning
DOWNLOAD
Download Mastering Machine Learning And Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Machine Learning And Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Mastering Tensorflow 1 X
DOWNLOAD
Author : Armando Fandango
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-22
Mastering Tensorflow 1 X written by Armando Fandango and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-22 with Computers categories.
Build, scale, and deploy deep neural network models using the star libraries in Python Key Features Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Book Description TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems. What you will learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters Who this book is for This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book.
Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-05-31
Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-31 with Computers categories.
Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Understand how to use PyTorch to build advanced neural network models Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks Book DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text, vision, and music generation models using PyTorch Build a deep Q-network (DQN) model in PyTorch Deploy PyTorch models on mobile devices (Android and iOS) Become well versed in rapid prototyping using PyTorch with fastai Perform neural architecture search effectively using AutoML Easily interpret machine learning models using Captum Design ResNets, LSTMs, and graph neural networks (GNNs) Create language and vision transformer models using Hugging Face Who this book is for This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.
Mastering Machine Learning On Aws
DOWNLOAD
Author : Dr. Saket S.R. Mengle
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20
Mastering Machine Learning On Aws written by Dr. Saket S.R. Mengle and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.
Machine Learning Mastery Deep Learning And Natural Language Processing Integration
DOWNLOAD
Author : Dr.Talluri.Sunil Kumar
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-07-24
Machine Learning Mastery Deep Learning And Natural Language Processing Integration written by Dr.Talluri.Sunil Kumar and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-24 with Computers categories.
Dr.Talluri.Sunil Kumar, Professor, Department of CSE-(CyS, DS) and AI&DS, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana, India. Dr.Sagar Yeruva, Associate Professor, Department of CSE - AIML & IoT, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana, India.
Mastering Ai And Machine Learning With Python
DOWNLOAD
Author : Anshuman Mishra
language : en
Publisher: Independently Published
Release Date : 2025-05-12
Mastering Ai And Machine Learning With Python written by Anshuman Mishra and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-12 with Computers categories.
This ambitious two-volume work, "Mastering AI and Machine Learning with Python: From Fundamentals to Advanced Deep Learning," aims to be a definitive guide for anyone seeking to understand, implement, and master the intricate world of Artificial Intelligence (AI) and Machine Learning (ML) using the versatile Python programming language. Spanning a projected 10,000 words across both volumes (with Volume 1 detailed below), this book meticulously progresses from foundational concepts to cutting-edge deep learning techniques, providing readers with a robust theoretical understanding coupled with practical implementation skills. Volume 1: Foundations and Core Machine Learning Techniques Volume 1 lays the essential groundwork for embarking on the journey of AI and ML. It is structured to take individuals with varying levels of prior knowledge - from complete beginners to those with some programming experience - and equip them with the core competencies required to understand and apply fundamental machine learning algorithms. Chapter 1: Introduction to AI and Machine Learning This introductory chapter serves as a compass, orienting the reader within the broad landscape of AI and its subfields. It begins by clearly delineating the concepts of Artificial Intelligence, Machine Learning, and Deep Learning, highlighting their relationships and distinctions. Understanding AI, Machine Learning, and Deep Learning: This section meticulously unpacks these often-interchangeable terms. It defines AI as the overarching field focused on creating intelligent agents capable of performing tasks that typically require human intelligence. Machine Learning is then presented as a subset of AI, where systems learn from data without being explicitly programmed. Finally, Deep Learning is introduced as a subfield of ML that utilizes artificial neural networks with multiple layers (deep neural networks) to extract complex patterns from large datasets. The chapter will use analogies and real-world examples to solidify these definitions, ensuring a clear understanding of the hierarchy and unique characteristics of each field. Real-World Applications of AI: To underscore the practical relevance and transformative power of AI, this section delves into a diverse range of real-world applications. It will explore how AI is revolutionizing industries such as healthcare (diagnosis, drug discovery), finance (fraud detection, algorithmic trading), transportation (autonomous vehicles), entertainment (recommendation systems), manufacturing (predictive maintenance), and customer service (chatbots). Each application will be briefly described, highlighting the specific AI techniques employed and the tangible benefits realized. This section aims to inspire the reader and contextualize the learning journey ahead. The Role of Python in AI Development: This crucial segment emphasizes why Python has emerged as the lingua franca of AI and ML. It will discuss Python's key advantages, including its clear and concise syntax, extensive ecosystem of powerful libraries (such as NumPy, Pandas, Scikit-learn, TensorFlow, and PyTorch), large and active community support, and its versatility for various stages of the AI development lifecycle - from data preprocessing to model deployment. The chapter will briefly introduce some of these key libraries, setting the stage for their detailed exploration in subsequent chapters. Overview of TensorFlow and PyTorch: As two of the most prominent deep learning frameworks, TensorFlow and PyTorch are introduced in this section. The chapter will provide a high-level overview of their functionalities, key features, and their respective strengths and weaknesses. It will touch upon their roles in building and training neural networks, their support for hardware acceleration (GPUs), and their growing adoption in both research and industry.
Mastering Machine Learning And Deep Learning
DOWNLOAD
Author : Krishna Kant Singh
language : en
Publisher: Wiley
Release Date : 2024-06-18
Mastering Machine Learning And Deep Learning written by Krishna Kant Singh and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-18 with Computers categories.
Machine Learning For Beginners
DOWNLOAD
Author : Samuel Hack
language : en
Publisher: Samuel Hack
Release Date : 2021-03-07
Machine Learning For Beginners written by Samuel Hack and has been published by Samuel Hack this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-07 with categories.
TODAY ONLY 55% OFF for Bookstores! Are you interested in learning about the amazing capabilities of machine learning, but you're worried it will be just too complicated? Or are you a programmer looking for a solid introduction into this field? Your customers must have this guide to understand the hidden secrets of artificial intelligence! Machine learning is an incredible technology which we're only just beginning to understand. Those who break into this industry early will reap the rewards as this field grows more and more important to businesses the world over. And the good news is, it's not too late to start! This guide breaks down the fundamentals of machine learning in a way that anyone can understand. With reference to the different kinds of machine learning models, neural networks, and the way these models learn data, you'll find everything you need to know to get started with machine learning in a concise, easy-to-understand way. Here's what you'll discover inside: What is Artificial Intelligence Really, and Why is it So Powerful? Choosing the Right Kind of Machine Learning Model for You An Introduction to Statistics Supervised and Unsupervised Learning The Power of Neural Networks Reinforcement Learning and Ensemble Modeling "Random Forests" and Decision Trees Must-Have Programming Tools And Much More! Whether you're already a programmer or if you're a complete beginner, now you can break into machine learning in no time! Covering all the basics from simple decision trees to the complex decision-making processes which mirror our own brains, Machine Learning for Beginners is your comprehensive introduction to this amazing field! Buy it NOW and let your customers become to addicted to this incredible book!
Machine Learning
DOWNLOAD
Author : Andrew Park
language : en
Publisher:
Release Date : 2020-11-14
Machine Learning written by Andrew Park and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-14 with categories.
Master The World Of Machine Learning And Data Science With This Comprehensive 2-in-1 bundleIf you want to learn more about Machine Learning and Data Science or how to master them with Python quickly and easily, then keep reading. Data Science and Machine Learning are one of the biggest buzzwords in the business world nowadays. Many businesses know the importance of collecting information, but as they can collect so much data in a short period, the real question is: "what is the next step?" Data Science includes all the different steps that you take with the data: collecting and cleaning them, analyzing them, applying Machine Learning algorithms and models, and then presenting your findings from the analysis with some good Data Visualizations. Machines and automation represent a huge part of our daily life. They are becoming part of our experience, and existence. Artificial Intelligence is currently one of the most thriving fields any programmer would wish to delve into, and for a good reason: this is the future! Simply put, Machine Learning is about teaching machines to think and make decisions as we would. The difference between the way machines learn and the way we do is that while for the most part we learn from experiences, machines learn from data. In book one, PYTHON MACHINE LEARNING, you will learn: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! In book two, PYTHON DATA SCIENCE, you will learn: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Where most books only focus on how collecting and cleaning the data, this book goes further, providing guidance on how to perform a proper analysis in order to extract precious information that may be vital for a business. Don't miss the opportunity to master the key points of Machine Learning technology and understand how researchers are breaking the boundaries of Data Science to mimic human intelligence in machines. Even if some Machine Learning concepts and algorithms can appear complex to most computer programming beginners, this book takes the time to explain them in a simple and concise way. Understanding Machine Learning and Data Science is easier than it looks. You just need the right guidance. And this bundle provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the techniques to manipulate and process datasets, the principles of Python programming, and its most important real-world applications. Would You Like To Know More?Scroll Up and Click the BUY NOW Button to Get Your Copy!
Mastering Machine Learning
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date : 2023-09-05
Mastering Machine Learning written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-05 with Computers categories.
Are you ready to become a master of machine learning? In "Mastering Machine Learning" by Kris Hermans, you'll embark on a transformative journey that will empower you with the skills and knowledge needed to conquer the world of data-driven intelligence. Discover Cutting-Edge Techniques and Practical Applications From self-driving cars to personalized recommendations, machine learning is transforming industries and reshaping the way we live and work. In this comprehensive guide, Kris Hermans equips you with the tools to harness the power of machine learning. Dive into the core concepts, algorithms, and models that underpin this revolutionary field. Become a Proficient Practitioner Whether you're a beginner or an experienced professional, this book provides a clear and structured path to mastering machine learning. Through hands-on examples and real-world case studies, you'll gain practical expertise in implementing machine learning models and solving complex problems. Kris Hermans guides you through the process, ensuring you develop a deep understanding of the techniques and algorithms that drive intelligent systems. From Fundamentals to Advanced Topics "Mastering Machine Learning" covers the full spectrum of machine learning, starting with the foundations of supervised and unsupervised learning and progressing to reinforcement learning, neural networks, and deep learning. Explore diverse models and learn how to choose the right approach for different applications. With this knowledge, you'll be able to tackle real-world challenges with confidence. Unlock the Potential of Machine Learning Across Industries Discover how machine learning is revolutionizing industries such as finance, healthcare, e-commerce, and cybersecurity. Through captivating case studies, you'll witness the transformative impact of machine learning and gain insights into how organizations are leveraging this technology to drive innovation, improve decision-making, and achieve unprecedented success. Navigate Ethical Considerations As machine learning becomes increasingly powerful, it's crucial to consider the ethical implications. "Mastering Machine Learning" addresses these important considerations head-on. Learn about the ethical challenges and responsibilities associated with machine learning applications and gain the knowledge to make informed, ethical decisions in your own work.