Download Machine Learning Mastery Deep Learning And Natural Language Processing Integration - eBooks (PDF)

Machine Learning Mastery Deep Learning And Natural Language Processing Integration


Machine Learning Mastery Deep Learning And Natural Language Processing Integration
DOWNLOAD

Download Machine Learning Mastery Deep Learning And Natural Language Processing Integration PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Mastery Deep Learning And Natural Language Processing Integration book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning Mastery Deep Learning And Natural Language Processing Integration


Machine Learning Mastery Deep Learning And Natural Language Processing Integration
DOWNLOAD
Author : Dr.Talluri.Sunil Kumar
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-07-24

Machine Learning Mastery Deep Learning And Natural Language Processing Integration written by Dr.Talluri.Sunil Kumar and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-24 with Computers categories.


Dr.Talluri.Sunil Kumar, Professor, Department of CSE-(CyS, DS) and AI&DS, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana, India. Dr.Sagar Yeruva, Associate Professor, Department of CSE - AIML & IoT, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana, India.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2017-11-21

Deep Learning For Natural Language Processing written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Computers categories.


Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.



Machine Learning Mastery Advanced Integration Of Deep Learning And Nlp


Machine Learning Mastery Advanced Integration Of Deep Learning And Nlp
DOWNLOAD
Author : Mrs.B.Kiranmayee Reddy
language : en
Publisher: SK Research Group of Companies
Release Date : 2025-05-20

Machine Learning Mastery Advanced Integration Of Deep Learning And Nlp written by Mrs.B.Kiranmayee Reddy and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-20 with Computers categories.


Authors: Mrs.B.Kiranmayee Reddy, Assistant Professor, Department of Computer Science and Engineering (AI&ML), G. Pulla Reddy Engineering College (Autonomous), Kurnool, Andhra Pradesh, India. Mrs.M.Sharmila Devi, Assistant Professor, Department of CSE, Santhiram Engineering College (Autonomous), Nandyal, Andhra Pradesh, India. Dr.G.Hemanth Kumar Yadav, Associate Professor, Department of Computer Science and Engineering (AI & ML), Srinivasa Ramanujan Institute of Technology (Autonomous), Anantapur, Andhra Pradesh, India. Mr.Kondanna Kanamaneni, Assistant Professor, Department of Computer Science and Engineering, Srinivasa Ramanujan Institute of Technology (Autonomous), Anantapur, Andhra Pradesh, India. Published by: SK Research Group of Companies, Madurai 625003, Tamil Nadu, India. Edition Details (I,II,III etc): I Copyright © SK Research Group of Companies, Madurai 625003, Tamil Nadu, India.



Natural Language Processing With Tensorflow


Natural Language Processing With Tensorflow
DOWNLOAD
Author : Thushan Ganegedara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31

Natural Language Processing With Tensorflow written by Thushan Ganegedara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.


Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher:
Release Date : 2017

Deep Learning With Python written by Jason Brownlee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Neural networks (Computer science) categories.




Natural Language Processing Crash Course For Beginners


Natural Language Processing Crash Course For Beginners
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-08-04

Natural Language Processing Crash Course For Beginners written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with categories.


Natural Language Processing Crash Course for Beginners Artificial Intelligence (AI) isn't the latest fad! The reason is AI has been around since 1956, and its relevance is evident in every field today. Artificial Intelligence incorporates human intelligence into machines. Machine Learning (ML), a branch of AI, enables machines to learn by themselves. Deep Learning (DL), a subfield of Machine Learning, uses algorithms that are inspired by the functioning of the human brain. Natural Language Processing (NLP) combines computational linguistics and Artificial Intelligence, enabling computers and humans to communicate seamlessly. And NLP is immensely powerful and impactful as every business is looking to integrate it into their day to day dealings. How Is This Book Different? This book by AI Publishing is carefully crafted, giving equal importance to the theoretical concepts as well as the practical aspects of natural language processing. In each chapter of the second half of the book, the theoretical concepts of different types of deep learning and NLP techniques have been covered in-depth, followed by practical examples. You will learn how to apply different NLP techniques using the TensorFlow and Keras libraries for Python. Each chapter contains exercises that are designed to evaluate your understanding of the concepts covered in that chapter. Also, in the Resources section of each chapter, you can access the Python notebook. The author has also compiled a list of hands-on NLP projects and competitions that you can try on your own. The main benefit of purchasing this book is you get immediate access to all the extra learning material presented with this book--Python codes, exercises, PDFs, and references--on the publisher's website without having to spend an extra cent. You can download the datasets used in this book at runtime, or you can access them in the Resources/Datasets folder. The author holds your hand through everything. He provides you a step by step explanation of the installation of the software needed to implement the various NLP techniques in this book. You can start experimenting with the practical aspects of NLP right from the beginning. Even if you are new to Python, you'll find the ultra-short course on Python programming language in the second chapter immensely helpful. You get all the codes and datasets with this book. So, if you have access to a computer with the internet, you can get started. The topics covered include: What is Natural Language Processing? Environment Setup and Python Crash Course Introduction to Deep Learning Text Cleaning and Manipulation Common NLP Tasks Importing Text Data from Various Sources Word Embeddings: Converting Words to Numbers IMDB Movies Sentimental Analysis Ham and Spam Message Classification Text Summarization and Topic Modeling Text Classification with Deep Learning Text Translation Using Seq2Seq Model State of the Art NLP with BERT Transformers Hands-on NLP Projects/Articles for Practice Exercise Solutions Click the BUY button and download the book now to start your Natural Language Processing journey.



Applied Natural Language Processing With Python


Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2018-09-11

Applied Natural Language Processing With Python written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-11 with Computers categories.


Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.



Hands On Deep Learning Architectures With Python


Hands On Deep Learning Architectures With Python
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30

Hands On Deep Learning Architectures With Python written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Stephan Raaijmakers
language : en
Publisher: Simon and Schuster
Release Date : 2022-12-06

Deep Learning For Natural Language Processing written by Stephan Raaijmakers and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-06 with Computers categories.


Explore the most challenging issues of natural language processing, and learn how to solve them with cutting-edge deep learning! Deep learning has advanced natural language processing to exciting new levels and powerful new applications! For the first time, computer systems can achieve "human" levels of summarizing, making connections, and other tasks that require comprehension and context. Deep Learning for Natural Language Processing reveals the groundbreaking techniques that make these innovations possible. Stephan Raaijmakers distills his extensive knowledge into useful best practices, real-world applications, and the inner workings of top NLP algorithms. Deep learning has transformed the field of natural language processing. Neural networks recognize not just words and phrases, but also patterns. Models infer meaning from context, and determine emotional tone. Powerful deep learning-based NLP models open up a goldmine of potential uses. Deep Learning for Natural Language Processing teaches you how to create advanced NLP applications using Python and the Keras deep learning library. You'll learn to use state-of the-art tools and techniques including BERT and XLNET, multitask learning, and deep memory-based NLP. Fascinating examples give you hands-on experience with a variety of real world NLP applications. Plus, the detailed code discussions show you exactly how to adapt each example to your own uses!



Deep Learning With Tensorflow 2 And Keras


Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-27

Deep Learning With Tensorflow 2 And Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.


Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.