Download Mastering Machine Learning Algorithms - eBooks (PDF)

Mastering Machine Learning Algorithms


Mastering Machine Learning Algorithms
DOWNLOAD

Download Mastering Machine Learning Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Machine Learning Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Machine Learning Algorithms


Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25

Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.


Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.



Mastering Machine Learning Algorithms Second Edition


Mastering Machine Learning Algorithms Second Edition
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher:
Release Date : 2020-01-31

Mastering Machine Learning Algorithms Second Edition written by Giuseppe Bonaccorso and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.




Mastering Machine Learning With R


Mastering Machine Learning With R
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Mastering Machine Learning With R written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.



Master Machine Learning Algorithms


Master Machine Learning Algorithms
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-03-04

Master Machine Learning Algorithms written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-04 with Computers categories.


You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.



Mastering Machine Learning On Aws


Mastering Machine Learning On Aws
DOWNLOAD
Author : Dr. Saket S.R. Mengle
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20

Mastering Machine Learning On Aws written by Dr. Saket S.R. Mengle and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.


Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.



Mastering Machine Learning Algorithms


Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher:
Release Date : 2020

Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computer algorithms categories.




The Master Algorithm


The Master Algorithm
DOWNLOAD
Author : Pedro Domingos
language : en
Publisher: Penguin UK
Release Date : 2015-09-22

The Master Algorithm written by Pedro Domingos and has been published by Penguin UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-22 with Science categories.


A spell-binding quest for the one algorithm capable of deriving all knowledge from data, including a cure for cancer Society is changing, one learning algorithm at a time, from search engines to online dating, personalized medicine to predicting the stock market. But learning algorithms are not just about Big Data - these algorithms take raw data and make it useful by creating more algorithms. This is something new under the sun: a technology that builds itself. In The Master Algorithm, Pedro Domingos reveals how machine learning is remaking business, politics, science and war. And he takes us on an awe-inspiring quest to find 'The Master Algorithm' - a universal learner capable of deriving all knowledge from data.



Mastering Machine Learning With Scikit Learn


Mastering Machine Learning With Scikit Learn
DOWNLOAD
Author : Gavin Hackeling
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-24

Mastering Machine Learning With Scikit Learn written by Gavin Hackeling and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with Computers categories.


Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.



Mastering Machine Learning Algorithms Practical Applications Using Python And R


Mastering Machine Learning Algorithms Practical Applications Using Python And R
DOWNLOAD
Author : AKASH BALAJI MALI NAGARJUNA PUTTA GOKUL SUBRAMANIAN PROF. (DR) ARPIT JAIN
language : en
Publisher: DeepMisti Publication
Release Date : 2024-11-10

Mastering Machine Learning Algorithms Practical Applications Using Python And R written by AKASH BALAJI MALI NAGARJUNA PUTTA GOKUL SUBRAMANIAN PROF. (DR) ARPIT JAIN and has been published by DeepMisti Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-10 with Computers categories.


In the ever-evolving landscape of the modern world, the synergy between technology and management has become a cornerstone of innovation and progress. This book, Mastering Machine Learning Algorithms: Practical Applications Using Python and R, is conceived to bridge the gap between emerging technological advancements in machine learning and their strategic application in various domains. Our objective is to equip readers with the tools and insights necessary to excel in this dynamic field. This book is structured to provide a comprehensive exploration of the methodologies and strategies that define the innovation of machine learning algorithms, particularly focusing on practical applications using Python and R. From foundational theories to advanced implementations, we delve into the critical aspects that drive successful application of machine learning techniques across industries. We have made a concerted effort to present complex concepts in a clear and accessible manner, making this work suitable for a diverse audience, including students, managers, and industry professionals. In authoring this book, we have drawn upon the latest research and best practices to ensure that readers not only gain a robust theoretical understanding but also acquire practical skills that can be applied in real-world scenarios. The chapters are designed to strike a balance between depth and breadth, covering topics ranging from algorithm development and data processing to strategic management of machine learning projects. Additionally, we emphasize the importance of effective communication, dedicating sections to the art of presenting innovative ideas and solutions in a precise and academically rigorous manner. The inspiration for this book arises from a recognition of the crucial role that machine learning algorithms and their practical applications play in shaping the future of industries. We are profoundly grateful to Chancellor Shri Shiv Kumar Gupta of Maharaja Agrasen Himalayan Garhwal University for his unwavering support and vision. His dedication to fostering academic excellence and promoting a culture of innovation has been instrumental in bringing this project to fruition. We hope this book will serve as a valuable resource and inspiration for those eager to deepen their understanding of how machine learning algorithms, applied through Python and R, can be harnessed to drive innovation. We believe that the knowledge and insights contained within these pages will empower readers to lead the way in creating innovative solutions that will define the future of data-driven industries. Thank you for joining us on this journey. Authors



Mastering Machine Learning With R


Mastering Machine Learning With R
DOWNLOAD
Author : Cory Leismester
language : en
Publisher: Packt Publishing
Release Date : 2015-10-28

Mastering Machine Learning With R written by Cory Leismester and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.


Master machine learning techniques with R to deliver insights for complex projectsAbout This Book• Get to grips with the application of Machine Learning methods using an extensive set of R packages• Understand the benefits and potential pitfalls of using machine learning methods• Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML systemWho This Book Is ForIf you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful.What You Will Learn• Gain deep insights to learn the applications of machine learning tools to the industry• Manipulate data in R efficiently to prepare it for analysis• Master the skill of recognizing techniques for effective visualization of data• Understand why and how to create test and training data sets for analysis• Familiarize yourself with fundamental learning methods such as linear and logistic regression• Comprehend advanced learning methods such as support vector machines• Realize why and how to apply unsupervised learning methodsIn DetailMachine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data.The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series.The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.Style and approachThis is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.