Applied Natural Language Processing With Python
DOWNLOAD
Download Applied Natural Language Processing With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Natural Language Processing With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2018-09-11
Applied Natural Language Processing With Python written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-11 with Computers categories.
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.
Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow
language : en
Publisher:
Release Date : 2018
Applied Natural Language Processing With Python written by Taweh Beysolow and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Machine learning categories.
Natural Language Understanding With Python
DOWNLOAD
Author : Deborah A. Dahl
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-06-30
Natural Language Understanding With Python written by Deborah A. Dahl and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Computers categories.
Build advanced NLU systems by utilizing NLP libraries such as NLTK, SpaCy, BERT, and OpenAI; ML libraries like Keras, scikit-learn, pandas, TensorFlow, and NumPy, along with visualization libraries such as Matplotlib and Seaborn. Purchase of the print Kindle book includes a free PDF eBook Key Features Master NLU concepts from basic text processing to advanced deep learning techniques Explore practical NLU applications like chatbots, sentiment analysis, and language translation Gain a deeper understanding of large language models like ChatGPT Book DescriptionNatural Language Understanding facilitates the organization and structuring of language allowing computer systems to effectively process textual information for various practical applications. Natural Language Understanding with Python will help you explore practical techniques for harnessing NLU to create diverse applications. with step-by-step explanations of essential concepts and practical examples, you’ll begin by learning about NLU and its applications. You’ll then explore a wide range of current NLU techniques and their most appropriate use-case. In the process, you’ll be introduced to the most useful Python NLU libraries. Not only will you learn the basics of NLU, you’ll also discover practical issues such as acquiring data, evaluating systems, and deploying NLU applications along with their solutions. The book is a comprehensive guide that’ll help you explore techniques and resources that can be used for different applications in the future. By the end of this book, you’ll be well-versed with the concepts of natural language understanding, deep learning, and large language models (LLMs) for building various AI-based applications.What you will learn Explore the uses and applications of different NLP techniques Understand practical data acquisition and system evaluation workflows Build cutting-edge and practical NLP applications to solve problems Master NLP development from selecting an application to deployment Optimize NLP application maintenance after deployment Build a strong foundation in neural networks and deep learning for NLU Who this book is for This book is for python developers, computational linguists, linguists, data scientists, NLP developers, conversational AI developers, and students looking to learn about natural language understanding (NLU) and applying natural language processing (NLP) technology to real problems. Anyone interested in addressing natural language problems will find this book useful. Working knowledge in Python is a must.
Fifth Conference On Applied Natural Language Processing
DOWNLOAD
Author : Association for Computational Linguistics
language : en
Publisher:
Release Date : 1997
Fifth Conference On Applied Natural Language Processing written by Association for Computational Linguistics and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computational linguistics categories.
Applied Natural Language Processing With Pytorch 2 0
DOWNLOAD
Author : Dr. Deepti
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2025-01-27
Applied Natural Language Processing With Pytorch 2 0 written by Dr. Deepti and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-27 with Computers categories.
Unlock the Power of PyTorch 2.0 for Next-Level Natural Language Processing. Key Features● Comprehensive coverage of NLP concepts, techniques, and best practices.● Hands-on examples with code implementations using PyTorch 2.0.● Focus on real-world applications and optimizing NLP models.● Learn to develop advanced NLP solutions with dynamic GPU acceleration. Book DescriptionNatural Language Processing (NLP) is revolutionizing industries, from chatbots to data insights. PyTorch 2.0 offers the tools to build powerful NLP models. Applied Natural Language Processing with PyTorch 2.0 provides a practical guide to mastering NLP with this advanced framework. This book starts with a strong foundation in NLP concepts and the essentials of PyTorch 2.0, ensuring that you are well-equipped to tackle advanced topics. It covers key techniques such as transformer models, pre-trained language models, sequence-to-sequence models, and more. Each chapter includes hands-on examples and code implementations for real-world application. With a focus on practical use cases, the book explores NLP tasks like sentiment analysis, text classification, named entity recognition, machine translation, and text generation. You'll learn how to preprocess text, design neural architectures, train models, and evaluate results. Whether you're a beginner or an experienced professional, this book will empower you to develop advanced NLP models and solutions. Get started today and unlock the potential of NLP with PyTorch 2.0! What you will learn● Master cutting-edge NLP techniques and integrate PyTorch 2.0 effectively.● Implement NLP concepts with clear, hands-on examples using PyTorch 2.0.● Tackle a wide range of NLP tasks, suitable for all experience levels.● Explore tasks like sentiment analysis, text classification, and translation.● Leverage advanced deep learning techniques for powerful NLP solutions.● Preprocess text, design models, train, and evaluate their performance. Table of Contents1. Introduction to Natural Language Processing2. Getting Started with PyTorch3. Text Preprocessing4. Building NLP Models with PyTorch5. Advanced NLP Techniques with PyTorch6. Model Training and Evaluation7. Improving NLP Models with PyTorch8. Deployment and Productionization9. Case Studies and Practical Examples10. Future Trends in Natural Language Processing and PyTorch.
Natural Language Processing With Tensorflow
DOWNLOAD
Author : Thushan Ganegedara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31
Natural Language Processing With Tensorflow written by Thushan Ganegedara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.
Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.
Natural Language Processing Recipes
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher: Apress
Release Date : 2019-01-29
Natural Language Processing Recipes written by Akshay Kulkarni and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.
Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in thisbook, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will Learn Apply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.
Natural Language Processing With Python
DOWNLOAD
Author : Steven Bird
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2009-06-12
Natural Language Processing With Python written by Steven Bird and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-12 with Computers categories.
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Hands On Natural Language Processing With Python
DOWNLOAD
Author : Rajesh Arumugam
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-18
Hands On Natural Language Processing With Python written by Rajesh Arumugam and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-18 with Computers categories.
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Transformers For Natural Language Processing
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-03-25
Transformers For Natural Language Processing written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-25 with Computers categories.
OpenAI's GPT-3, ChatGPT, GPT-4 and Hugging Face transformers for language tasks in one book. Get a taste of the future of transformers, including computer vision tasks and code writing and assistance. Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Improve your productivity with OpenAI’s ChatGPT and GPT-4 from prompt engineering to creating and analyzing machine learning models Pretrain a BERT-based model from scratch using Hugging Face Fine-tune powerful transformer models, including OpenAI's GPT-3, to learn the logic of your data Book DescriptionTransformers are...well...transforming the world of AI. There are many platforms and models out there, but which ones best suit your needs? Transformers for Natural Language Processing, 2nd Edition, guides you through the world of transformers, highlighting the strengths of different models and platforms, while teaching you the problem-solving skills you need to tackle model weaknesses. You'll use Hugging Face to pretrain a RoBERTa model from scratch, from building the dataset to defining the data collator to training the model. If you're looking to fine-tune a pretrained model, including GPT-3, then Transformers for Natural Language Processing, 2nd Edition, shows you how with step-by-step guides. The book investigates machine translations, speech-to-text, text-to-speech, question-answering, and many more NLP tasks. It provides techniques to solve hard language problems and may even help with fake news anxiety (read chapter 13 for more details). You'll see how cutting-edge platforms, such as OpenAI, have taken transformers beyond language into computer vision tasks and code creation using DALL-E 2, ChatGPT, and GPT-4. By the end of this book, you'll know how transformers work and how to implement them and resolve issues like an AI detective.What you will learn Discover new techniques to investigate complex language problems Compare and contrast the results of GPT-3 against T5, GPT-2, and BERT-based transformers Carry out sentiment analysis, text summarization, casual speech analysis, machine translations, and more using TensorFlow, PyTorch, and GPT-3 Find out how ViT and CLIP label images (including blurry ones!) and create images from a sentence using DALL-E Learn the mechanics of advanced prompt engineering for ChatGPT and GPT-4 Who this book is for If you want to learn about and apply transformers to your natural language (and image) data, this book is for you. You'll need a good understanding of Python and deep learning and a basic understanding of NLP to benefit most from this book. Many platforms covered in this book provide interactive user interfaces, which allow readers with a general interest in NLP and AI to follow several chapters. And don't worry if you get stuck or have questions; this book gives you direct access to our AI/ML community to help guide you on your transformers journey!