Download Deep Learning For Natural Language Processing - eBooks (PDF)

Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD

Download Deep Learning For Natural Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning For Natural Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Natural Language Processing With Pytorch


Natural Language Processing With Pytorch
DOWNLOAD
Author : Delip Rao
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-01-22

Natural Language Processing With Pytorch written by Delip Rao and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Computers categories.


Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems



Natural Language Processing Recipes


Natural Language Processing Recipes
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher: Apress
Release Date : 2019-01-29

Natural Language Processing Recipes written by Akshay Kulkarni and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.


Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in thisbook, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will Learn Apply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.



Natural Language Processing Crash Course For Beginners


Natural Language Processing Crash Course For Beginners
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-08-04

Natural Language Processing Crash Course For Beginners written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with categories.


Natural Language Processing Crash Course for Beginners Artificial Intelligence (AI) isn't the latest fad! The reason is AI has been around since 1956, and its relevance is evident in every field today. Artificial Intelligence incorporates human intelligence into machines. Machine Learning (ML), a branch of AI, enables machines to learn by themselves. Deep Learning (DL), a subfield of Machine Learning, uses algorithms that are inspired by the functioning of the human brain. Natural Language Processing (NLP) combines computational linguistics and Artificial Intelligence, enabling computers and humans to communicate seamlessly. And NLP is immensely powerful and impactful as every business is looking to integrate it into their day to day dealings. How Is This Book Different? This book by AI Publishing is carefully crafted, giving equal importance to the theoretical concepts as well as the practical aspects of natural language processing. In each chapter of the second half of the book, the theoretical concepts of different types of deep learning and NLP techniques have been covered in-depth, followed by practical examples. You will learn how to apply different NLP techniques using the TensorFlow and Keras libraries for Python. Each chapter contains exercises that are designed to evaluate your understanding of the concepts covered in that chapter. Also, in the Resources section of each chapter, you can access the Python notebook. The author has also compiled a list of hands-on NLP projects and competitions that you can try on your own. The main benefit of purchasing this book is you get immediate access to all the extra learning material presented with this book--Python codes, exercises, PDFs, and references--on the publisher's website without having to spend an extra cent. You can download the datasets used in this book at runtime, or you can access them in the Resources/Datasets folder. The author holds your hand through everything. He provides you a step by step explanation of the installation of the software needed to implement the various NLP techniques in this book. You can start experimenting with the practical aspects of NLP right from the beginning. Even if you are new to Python, you'll find the ultra-short course on Python programming language in the second chapter immensely helpful. You get all the codes and datasets with this book. So, if you have access to a computer with the internet, you can get started. The topics covered include: What is Natural Language Processing? Environment Setup and Python Crash Course Introduction to Deep Learning Text Cleaning and Manipulation Common NLP Tasks Importing Text Data from Various Sources Word Embeddings: Converting Words to Numbers IMDB Movies Sentimental Analysis Ham and Spam Message Classification Text Summarization and Topic Modeling Text Classification with Deep Learning Text Translation Using Seq2Seq Model State of the Art NLP with BERT Transformers Hands-on NLP Projects/Articles for Practice Exercise Solutions Click the BUY button and download the book now to start your Natural Language Processing journey.



Deep Learning In Natural Language Processing


Deep Learning In Natural Language Processing
DOWNLOAD
Author : Li Deng
language : en
Publisher: Springer
Release Date : 2018-05-23

Deep Learning In Natural Language Processing written by Li Deng and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-23 with Computers categories.


In recent years, deep learning has fundamentally changed the landscapes of a number of areas in artificial intelligence, including speech, vision, natural language, robotics, and game playing. In particular, the striking success of deep learning in a wide variety of natural language processing (NLP) applications has served as a benchmark for the advances in one of the most important tasks in artificial intelligence. This book reviews the state of the art of deep learning research and its successful applications to major NLP tasks, including speech recognition and understanding, dialogue systems, lexical analysis, parsing, knowledge graphs, machine translation, question answering, sentiment analysis, social computing, and natural language generation from images. Outlining and analyzing various research frontiers of NLP in the deep learning era, it features self-contained, comprehensive chapters written by leading researchers in the field. A glossary of technical terms and commonly used acronyms in the intersection of deep learning and NLP is also provided. The book appeals to advanced undergraduate and graduate students, post-doctoral researchers, lecturers and industrial researchers, as well as anyone interested in deep learning and natural language processing.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Karthiek Reddy Bokka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-06-11

Deep Learning For Natural Language Processing written by Karthiek Reddy Bokka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-11 with Computers categories.


Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues. Key FeaturesGain insights into the basic building blocks of natural language processingLearn how to select the best deep neural network to solve your NLP problemsExplore convolutional and recurrent neural networks and long short-term memory networksBook Description Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search. By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues. What you will learnUnderstand various pre-processing techniques for deep learning problemsBuild a vector representation of text using word2vec and GloVeCreate a named entity recognizer and parts-of-speech tagger with Apache OpenNLPBuild a machine translation model in KerasDevelop a text generation application using LSTMBuild a trigger word detection application using an attention modelWho this book is for If you’re an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.



Machine Learning And Deep Learning In Natural Language Processing


Machine Learning And Deep Learning In Natural Language Processing
DOWNLOAD
Author : Anitha S. Pillai
language : en
Publisher: CRC Press
Release Date : 2023-10-18

Machine Learning And Deep Learning In Natural Language Processing written by Anitha S. Pillai and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-18 with Computers categories.


Natural Language Processing (NLP) is a sub-field of Artificial Intelligence, linguistics, and computer science and is concerned with the generation, recognition, and understanding of human languages, both written and spoken. NLP systems examine the grammatical structure of sentences as well as the specific meanings of words, and then they utilize algorithms to extract meaning and produce results. Machine Learning and Deep Learning in Natural Language Processing aims at providing a review of current Neural Network techniques in the NLP field, in particular about Conversational Agents (chatbots), Text-to-Speech, management of non-literal content – like emotions, but also satirical expressions – and applications in the healthcare field. NLP has the potential to be a disruptive technology in various healthcare fields, but so far little attention has been devoted to that goal. This book aims at providing some examples of NLP techniques that can, for example, restore speech, detect Parkinson’s disease, or help psychotherapists. This book is intended for a wide audience. Beginners will find useful chapters providing a general introduction to NLP techniques, while experienced professionals will appreciate the chapters about advanced management of emotion, empathy, and non-literal content.



Deep Learning For Nlp And Speech Recognition


Deep Learning For Nlp And Speech Recognition
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2019-06-10

Deep Learning For Nlp And Speech Recognition written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-10 with Computers categories.


This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Palash Goyal
language : en
Publisher: Apress
Release Date : 2018-06-26

Deep Learning For Natural Language Processing written by Palash Goyal and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-26 with Computers categories.


Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. What You Will Learn Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification Who This Book Is For Software developers who are curious to try out deep learning with NLP.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2017-11-21

Deep Learning For Natural Language Processing written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Computers categories.


Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.



Transfer Learning For Natural Language Processing


Transfer Learning For Natural Language Processing
DOWNLOAD
Author : Paul Azunre
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-31

Transfer Learning For Natural Language Processing written by Paul Azunre and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-31 with Computers categories.


Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions