Deep Learning With R Third Edition
DOWNLOAD
Download Deep Learning With R Third Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning With R Third Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning With R Third Edition
DOWNLOAD
Author : Brett Lantz
language : en
Publisher:
Release Date : 2019
Machine Learning With R Third Edition written by Brett Lantz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.5 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks - the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.
Mastering Machine Learning With R
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Mastering Machine Learning With R written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.
Deep Learning With R Third Edition
DOWNLOAD
Author : François Chollet
language : en
Publisher: Manning
Release Date : 2025-11-25
Deep Learning With R Third Edition written by François Chollet and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-11-25 with Computers categories.
Deep learning from the ground up using R and the powerful Keras library! Deep Learning with R, Third Edition introduces deep learning from scratch with examples that use the R language and the Keras library. Each chapter offers practical code examples that build your understanding of deep learning layer by layer. You’ll appreciate the intuitive explanations, crisp illustrations, and clear examples. In this expanded third edition you’ll find fresh chapters on the transformers architecture, building your own GPT-like large language model, and image generation with diffusion models. Plus, even DL veterans will benefit from the insightful explanations on the nature of deep learning. In Deep Learning with R, Third Edition you will learn: • Deep learning from first principles • The latest features of Keras • Image classification and image segmentation • Time series forecasting • Text classification and machine translation • Text and image generation—build your own LLMs and diffusion models! • Scaling and tuning models For R programmers, the R interface to the Keras deep learning library is a powerful head start on building deep learning models without switching to Python. It provides a simple, consistent API that makes deep learning accessible and simplifies the process of building neural networks, even if you have no prior experience in advanced machine learning. About the book Deep Learning with R, Third Edition introduces R programmers to the latest advances in deep learning. In it, you’ll explore how to use Keras 3 and R to build and train deep learning models, all without advanced math or low-level programming. You’ll get started on core DL tasks like computer vision and natural language processing, and you’ll take your first steps into the world of transformers, LLMs, and the foundations of modern AI. You’ll learn to fine-tune and evaluate your models for peak performance, and dive into advanced methods like transfer learning and model interpretability. This expanded third edition brings cutting-edge coverage of transformers, building your own GPT-style language model, and creating images with diffusion models—all in R. About the reader For readers with intermediate R skills. No previous experience with Keras, TensorFlow, Jax, Torch, or deep learning is required. About the author François Chollet is the creator of Keras. Tomasz Kalinowski is a software engineer at Posit Software, PBC (formerly RStudio) and maintainer of the Keras and Tensorflow R packages. Get a free eBook (PDF or ePub) from Manning as well as access to the online liveBook format (and its AI assistant that will answer your questions in any language) when you purchase the print book.
Machine Learning With R
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-15
Machine Learning With R written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.
Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks — the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
Mastering Machine Learning With R Third Edition
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher:
Release Date : 2019
Mastering Machine Learning With R Third Edition written by Cory Lesmeister and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key Features Build independent machine learning (ML) systems leveraging the best features of R 3.5 Understand and apply different machine learning techniques using real-world examples Use methods such as multi-class classification, regression, and clustering Book Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML, using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You'll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you'll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You'll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you'll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you'll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learn Prepare data for machine learning methods with ease Understand how to write production-ready code and package it for use Produce simple and effective data visualizations for improved insights Master advanced methods, such as Boosted Trees and deep neural networks Use natural language processing to extract insights in relation to text Implement tree-based classifiers, including Random Forest and Boosted Tree Who this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement ...
Advanced Artificial Intelligence Third Edition
DOWNLOAD
Author : Zhongzhi Shi
language : en
Publisher: World Scientific
Release Date : 2024-11-04
Advanced Artificial Intelligence Third Edition written by Zhongzhi Shi and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-04 with Computers categories.
This third edition comprehensively captures the cutting-edge research achievements of AI. Topics are thoroughly revised and updated, presenting the latest techniques and strategies to address the impending challenges facing computer scientists today.The useful reference text benefits professionals, academics, researchers, senior and graduate students in the information field and related tertiary specialties.
Probabilistic Machine Learning
DOWNLOAD
Author : Kevin P. Murphy
language : en
Publisher: MIT Press
Release Date : 2023-08-15
Probabilistic Machine Learning written by Kevin P. Murphy and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-15 with Computers categories.
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. Covers generation of high dimensional outputs, such as images, text, and graphs Discusses methods for discovering insights about data, based on latent variable models Considers training and testing under different distributions Explores how to use probabilistic models and inference for causal inference and decision making Features online Python code accompaniment
Deep Learning In Time Series Analysis
DOWNLOAD
Author : Arash Gharehbaghi
language : en
Publisher: CRC Press
Release Date : 2023-07-07
Deep Learning In Time Series Analysis written by Arash Gharehbaghi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-07 with Mathematics categories.
Deep learning is an important element of artificial intelligence, especially in applications such as image classification in which various architectures of neural network, e.g., convolutional neural networks, have yielded reliable results. This book introduces deep learning for time series analysis, particularly for cyclic time series. It elaborates on the methods employed for time series analysis at the deep level of their architectures. Cyclic time series usually have special traits that can be employed for better classification performance. These are addressed in the book. Processing cyclic time series is also covered herein. An important factor in classifying stochastic time series is the structural risk associated with the architecture of classification methods. The book addresses and formulates structural risk, and the learning capacity defined for a classification method. These formulations and the mathematical derivations will help the researchers in understanding the methods and even express their methodologies in an objective mathematical way. The book has been designed as a self-learning textbook for the readers with different backgrounds and understanding levels of machine learning, including students, engineers, researchers, and scientists of this domain. The numerous informative illustrations presented by the book will lead the readers to a deep level of understanding about the deep learning methods for time series analysis.
Mastering Machine Learning With R
DOWNLOAD
Author : Cory Leismester
language : en
Publisher: Packt Publishing
Release Date : 2015-10-28
Mastering Machine Learning With R written by Cory Leismester and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.
Master machine learning techniques with R to deliver insights for complex projectsAbout This Book• Get to grips with the application of Machine Learning methods using an extensive set of R packages• Understand the benefits and potential pitfalls of using machine learning methods• Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML systemWho This Book Is ForIf you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful.What You Will Learn• Gain deep insights to learn the applications of machine learning tools to the industry• Manipulate data in R efficiently to prepare it for analysis• Master the skill of recognizing techniques for effective visualization of data• Understand why and how to create test and training data sets for analysis• Familiarize yourself with fundamental learning methods such as linear and logistic regression• Comprehend advanced learning methods such as support vector machines• Realize why and how to apply unsupervised learning methodsIn DetailMachine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data.The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series.The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.Style and approachThis is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.