Download Machine Learning With R - eBooks (PDF)

Machine Learning With R


Machine Learning With R
DOWNLOAD

Download Machine Learning With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning With R


Machine Learning With R
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-05-29

Machine Learning With R written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-29 with Computers categories.


Use R and tidyverse to prepare, clean, import, visualize, transform, program, communicate, predict and model data No R experience is required, although prior exposure to statistics and programming is helpful Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Get to grips with the tidyverse, challenging data, and big data Create clear and concise data and model visualizations that effectively communicate results to stakeholders Solve a variety of problems using regression, ensemble methods, clustering, deep learning, probabilistic models, and more Book DescriptionDive into R with this data science guide on machine learning (ML). Machine Learning with R, Fourth Edition, takes you through classification methods like nearest neighbor and Naive Bayes and regression modeling, from simple linear to logistic. Dive into practical deep learning with neural networks and support vector machines and unearth valuable insights from complex data sets with market basket analysis. Learn how to unlock hidden patterns within your data using k-means clustering. With three new chapters on data, you’ll hone your skills in advanced data preparation, mastering feature engineering, and tackling challenging data scenarios. This book helps you conquer high-dimensionality, sparsity, and imbalanced data with confidence. Navigate the complexities of big data with ease, harnessing the power of parallel computing and leveraging GPU resources for faster insights. Elevate your understanding of model performance evaluation, moving beyond accuracy metrics. With a new chapter on building better learners, you’ll pick up techniques that top teams use to improve model performance with ensemble methods and innovative model stacking and blending techniques. Machine Learning with R, Fourth Edition, equips you with the tools and knowledge to tackle even the most formidable data challenges. Unlock the full potential of machine learning and become a true master of the craft.What you will learn Learn the end-to-end process of machine learning from raw data to implementation Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks Prepare, transform, and clean data using the tidyverse Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, Hadoop, H2O, and TensorFlow Who this book is for This book is designed to help data scientists, actuaries, data analysts, financial analysts, social scientists, business and machine learning students, and any other practitioners who want a clear, accessible guide to machine learning with R. No R experience is required, although prior exposure to statistics and programming is helpful.



Machine Learning With R


Machine Learning With R
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-07-31

Machine Learning With R written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-31 with Computers categories.


Updated and upgraded to the latest libraries and most modern thinking, Machine Learning with R, Second Edition provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience. With this book, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering.



Mastering Machine Learning With R


Mastering Machine Learning With R
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Mastering Machine Learning With R written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.



Machine Learning With R


Machine Learning With R
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-15

Machine Learning With R written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.


Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks — the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.



Introduction To Machine Learning With R


Introduction To Machine Learning With R
DOWNLOAD
Author : Scott Burger
language : en
Publisher:
Release Date : 2018

Introduction To Machine Learning With R written by Scott Burger and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with R (Computer program language) categories.


Machine learning can be a difficult subject if you’re not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You’ll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret. By developing a familiarity with topics like understanding the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning. Understand the major parts of machine learning algorithms Recognize how machine learning can be used to solve a problem in a simple manner Figure out when to use certain machine learning algorithms versus others Learn how to operationalize algorithms with cutting edge packages



Practical Machine Learning In R


Practical Machine Learning In R
DOWNLOAD
Author : Fred Nwanganga
language : en
Publisher: John Wiley & Sons
Release Date : 2020-05-27

Practical Machine Learning In R written by Fred Nwanganga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-27 with Computers categories.


Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.





DOWNLOAD
Author :
language : en
Publisher:
Release Date :

written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Applied Supervised Learning With R


Applied Supervised Learning With R
DOWNLOAD
Author : Karthik Ramasubramanian
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31

Applied Supervised Learning With R written by Karthik Ramasubramanian and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.


Learn the ropes of supervised machine learning with R by studying popular real-world use-cases, and understand how it drives object detection in driver less cars, customer churn, and loan default prediction. Key FeaturesStudy supervised learning algorithms by using real-world datasets Fine tune optimal parameters with hyperparameter optimizationSelect the best algorithm using the model evaluation frameworkBook Description R provides excellent visualization features that are essential for exploring data before using it in automated learning. Applied Supervised Learning with R helps you cover the complete process of employing R to develop applications using supervised machine learning algorithms for your business needs. The book starts by helping you develop your analytical thinking to create a problem statement using business inputs and domain research. You will then learn different evaluation metrics that compare various algorithms, and later progress to using these metrics to select the best algorithm for your problem. After finalizing the algorithm you want to use, you will study the hyperparameter optimization technique to fine-tune your set of optimal parameters. To prevent you from overfitting your model, a dedicated section will even demonstrate how you can add various regularization terms. By the end of this book, you will have the advanced skills you need for modeling a supervised machine learning algorithm that precisely fulfills your business needs. What you will learnDevelop analytical thinking to precisely identify a business problemWrangle data with dplyr, tidyr, and reshape2Visualize data with ggplot2Validate your supervised machine learning model using k-fold Optimize hyperparameters with grid and random search, and Bayesian optimizationDeploy your model on Amazon Web Services (AWS) Lambda with plumberImprove your model’s performance with feature selection and dimensionality reductionWho this book is for This book is specially designed for novice and intermediate-level data analysts, data scientists, and data engineers who want to explore different methods of supervised machine learning and its various use cases. Some background in statistics, probability, calculus, linear algebra, and programming will help you thoroughly understand and follow the content of this book.



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Machine Learning With R Second Edition


Machine Learning With R Second Edition
DOWNLOAD
Author : Brett Lantz
language : en
Publisher:
Release Date : 2015

Machine Learning With R Second Edition written by Brett Lantz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


Updated and upgraded to the latest libraries and most modern thinking, Machine Learning with R, Second Edition provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience. With this book, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering.