Download Data Analysis Machine Learning And Knowledge Discovery - eBooks (PDF)

Data Analysis Machine Learning And Knowledge Discovery


Data Analysis Machine Learning And Knowledge Discovery
DOWNLOAD

Download Data Analysis Machine Learning And Knowledge Discovery PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis Machine Learning And Knowledge Discovery book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Analysis Machine Learning And Knowledge Discovery


Data Analysis Machine Learning And Knowledge Discovery
DOWNLOAD
Author : Myra Spiliopoulou
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-26

Data Analysis Machine Learning And Knowledge Discovery written by Myra Spiliopoulou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-26 with Computers categories.


Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012. ​



Machine Learning For Knowledge Discovery With R


Machine Learning For Knowledge Discovery With R
DOWNLOAD
Author : Kao-Tai Tsai
language : en
Publisher: CRC Press
Release Date : 2021-09-14

Machine Learning For Knowledge Discovery With R written by Kao-Tai Tsai and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-14 with Business & Economics categories.


Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein. Key Features: Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies. Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations. Written by statistical data analysis practitioner for practitioners. The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.



The Essentials Of Data Science Knowledge Discovery Using R


The Essentials Of Data Science Knowledge Discovery Using R
DOWNLOAD
Author : Graham J. Williams
language : en
Publisher: CRC Press
Release Date : 2017-07-28

The Essentials Of Data Science Knowledge Discovery Using R written by Graham J. Williams and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-28 with Business & Economics categories.


The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.



Feature Engineering For Machine Learning And Data Analytics


Feature Engineering For Machine Learning And Data Analytics
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: CRC Press
Release Date : 2018-03-14

Feature Engineering For Machine Learning And Data Analytics written by Guozhu Dong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-14 with Business & Economics categories.


Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.



Advances In Knowledge Discovery And Data Mining


Advances In Knowledge Discovery And Data Mining
DOWNLOAD
Author : Usama M. Fayyad
language : en
Publisher:
Release Date : 1996

Advances In Knowledge Discovery And Data Mining written by Usama M. Fayyad and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.


Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.



Deep Learning In Data Analytics


Deep Learning In Data Analytics
DOWNLOAD
Author : Debi Prasanna Acharjya
language : en
Publisher: Springer Nature
Release Date : 2021-08-11

Deep Learning In Data Analytics written by Debi Prasanna Acharjya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Technology & Engineering categories.


This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.



Advances In Knowledge Discovery And Data Mining


Advances In Knowledge Discovery And Data Mining
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Springer
Release Date : 2019-04-03

Advances In Knowledge Discovery And Data Mining written by Qiang Yang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-03 with Computers categories.


The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and featureselection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.



Data Analytics


Data Analytics
DOWNLOAD
Author : Juan J. Cuadrado-Gallego
language : en
Publisher: Springer Nature
Release Date : 2023-11-10

Data Analytics written by Juan J. Cuadrado-Gallego and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-10 with Computers categories.


Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools. Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is dedicated to a lesson, allowing readers to dive deep into each topic with detailed explanations and examples. Readers will learn the theoretical concepts and then immediately apply them to practical exercises to reinforce their knowledge. And in the lab sessions, readers will learn the ins and outs of the R environment and data science methodology to solve exercises with the R language. With detailed solutions provided for all examples and exercises, readers can use this book to study and master data analytics on their own. Whether you're a student, professional, or simply curious about data analytics, this book is a must-have for anyone looking to expand their knowledge in this exciting field. The following chapters have contributions by: Chapter 4, "Anomaly Detection" - Juan J. Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez, and Abdelhamid Tayebi Chapter 5, "Unsupervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Abdelhamid Tayebi Chapter 6, "Supervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Josefa Gómez



Principles Of Data Mining And Knowledge Discovery


Principles Of Data Mining And Knowledge Discovery
DOWNLOAD
Author : Luc de Raedt
language : en
Publisher: Springer
Release Date : 2003-06-30

Principles Of Data Mining And Knowledge Discovery written by Luc de Raedt and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-30 with Computers categories.


This book constitutes the refereed proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2001, held in Freiburg, Germany, in September 2001. The 40 revised full papers presented together with four invited contributions were carefully reviewed and selected from close to 100 submissions. Among the topics addressed are hidden Markov models, text summarization, supervised learning, unsupervised learning, demographic data analysis, phenotype data mining, spatio-temporal clustering, Web-usage analysis, association rules, clustering algorithms, time series analysis, rule discovery, text categorization, self-organizing maps, filtering, reinforcemant learning, support vector machines, visual data mining, and machine learning.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Peggy Cellier
language : en
Publisher: Springer Nature
Release Date : 2020-03-27

Machine Learning And Knowledge Discovery In Databases written by Peggy Cellier and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with Computers categories.


This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.