Download Deep Learning In Data Analytics - eBooks (PDF)

Deep Learning In Data Analytics


Deep Learning In Data Analytics
DOWNLOAD

Download Deep Learning In Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning In Data Analytics


Deep Learning In Data Analytics
DOWNLOAD
Author : Debi Prasanna Acharjya
language : en
Publisher: Springer Nature
Release Date : 2021-08-11

Deep Learning In Data Analytics written by Debi Prasanna Acharjya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Technology & Engineering categories.


This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.



Deep Learning For Social Media Data Analytics


Deep Learning For Social Media Data Analytics
DOWNLOAD
Author : Tzung-Pei Hong
language : en
Publisher: Springer Nature
Release Date : 2022-09-18

Deep Learning For Social Media Data Analytics written by Tzung-Pei Hong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-18 with Computers categories.


This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.



Deep Learning Convergence To Big Data Analytics


Deep Learning Convergence To Big Data Analytics
DOWNLOAD
Author : Murad Khan
language : en
Publisher: Springer
Release Date : 2018-12-30

Deep Learning Convergence To Big Data Analytics written by Murad Khan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-30 with Computers categories.


This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.



Integrating Deep Learning Algorithms To Overcome Challenges In Big Data Analytics


Integrating Deep Learning Algorithms To Overcome Challenges In Big Data Analytics
DOWNLOAD
Author : R. Sujatha
language : en
Publisher: CRC Press
Release Date : 2021-09-22

Integrating Deep Learning Algorithms To Overcome Challenges In Big Data Analytics written by R. Sujatha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.


Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts.



Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches


Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches
DOWNLOAD
Author : K. Gayathri Devi
language : en
Publisher: CRC Press
Release Date : 2020-10-07

Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches written by K. Gayathri Devi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-07 with Computers categories.


Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning



Learn Data Analytics For Beginners To Core Advance


Learn Data Analytics For Beginners To Core Advance
DOWNLOAD
Author : Janani Sathish
language : en
Publisher: Independently Published
Release Date : 2021-05

Learn Data Analytics For Beginners To Core Advance written by Janani Sathish and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05 with categories.


Data science has taken the planet by storm. Every field of study and area of business has been affected as people increasingly realize the worth of the incredible quantities of knowledge being generated. But to extract value from those data, one must be trained within the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it a useful tool for data scientists round the world. This book is about the basics of R programming. you'll start with the fundamentals of the language, find out how to control datasets, the way to write functions, and the way to debug and optimize code. With the basics provided during this book, you'll have a solid foundation on which to create your data science toolbox. during this book you'll learn what you would like to understand to start assembling and leading a knowledge science enterprise, albeit you've got never worked in data science before. You'll get a crash program in data science in order that you'll be familiar with the sector and understand your role as a pacesetter . You'll also find out how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the info science pipeline, the goals of every stage, and the way to stay your team on track throughout. Finally, you'll learn some down-to-earth practical skills which will assist you overcome the common challenges that regularly derail data science projects Reproducibility is that the concept data analyses should be published or made available with their data and software code in order that others may verify the findings and repose on them.



Disease Prediction Using Machine Learning Deep Learning And Data Analytics


Disease Prediction Using Machine Learning Deep Learning And Data Analytics
DOWNLOAD
Author : Geeta Rani
language : en
Publisher: Bentham Science Publishers
Release Date : 2024-03-07

Disease Prediction Using Machine Learning Deep Learning And Data Analytics written by Geeta Rani and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-07 with Computers categories.


This book is a comprehensive review of technologies and data in healthcare services. It features a compilation of 10 chapters that inform readers about the recent research and developments in this field. Each chapter focuses on a specific aspect of healthcare services, highlighting the potential impact of technology on enhancing practices and outcomes. The main features of the book include 1) referenced contributions from healthcare and data analytics experts, 2) a broad range of topics that cover healthcare services, and 3) demonstration of deep learning techniques for specific diseases. Key topics: - Federated learning in analysis of sensitive healthcare data while preserving privacy and security. - Artificial intelligence for 3-D bone image reconstruction. - Detection of disease severity and creating personalized treatment plans using machine learning and software tools - Case studies for disease detection methods for different disease and conditions, including dementia, asthma, eye diseases - Brain-computer interfaces - Data mining for standardized electronic health records - Data collection, management, and analysis in epidemiological research The book is a resource for learners and professionals in healthcare service training programs and health administration departments. Readership Learners and professionals in healthcare service training programs and health administration departments.



Big Data Analytics Methods


Big Data Analytics Methods
DOWNLOAD
Author : Peter Ghavami
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2019-12-16

Big Data Analytics Methods written by Peter Ghavami and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Business & Economics categories.


Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.



Learn Data Analytics For Beginners


Learn Data Analytics For Beginners
DOWNLOAD
Author : Landon Adrian
language : en
Publisher:
Release Date : 2019-08-11

Learn Data Analytics For Beginners written by Landon Adrian and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-11 with categories.


Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming.Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects Reproducibility is the idea that data analyses should be published or made available with their data and software code so that others may verify the findings and build upon them. The need for reproducible report writing is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available.



Deep Learning For Data Analytics


Deep Learning For Data Analytics
DOWNLOAD
Author : Himansu Das
language : en
Publisher: Academic Press
Release Date : 2020-05-29

Deep Learning For Data Analytics written by Himansu Das and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-29 with Science categories.


Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis. - Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications. - Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks - Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning