Text Mining
DOWNLOAD
Download Text Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Text Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Text Mining
DOWNLOAD
Author : Sholom M. Weiss
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-01-08
Text Mining written by Sholom M. Weiss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-08 with Computers categories.
Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.
Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03
Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Introduction To Text Mining
DOWNLOAD
Author : Gabe Ignatow
language : en
Publisher:
Release Date : 2017
Introduction To Text Mining written by Gabe Ignatow and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.
Gain a foundational understanding of the analysis of textual data sets from social media sites, digital archives, and digital surveys and interviews through the study of language and social interactions in digital environments. This course is perfect for social scientists who want to gain a conceptual overview of the text mining landscape to take first steps towards working on a text mining project or collaborating with computational colleagues. By taking this course you will: Learn the foundations of Natural Language Processing (NLP) Learn how text mining tools have been used successfully by social scientists Understand basic text processing techniques Understand how to approach narrative analysis, thematic analysis, and metaphor analysis Learn about key computer science methods for text mining, such as text classification and opinion mining.
The Text Mining Handbook
DOWNLOAD
Author : Ronen Feldman
language : en
Publisher: Cambridge University Press
Release Date : 2007
The Text Mining Handbook written by Ronen Feldman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
Text mining is a new and exciting area of computer science research that tries to solve the crisis of information overload by combining techniques from data mining, machine learning, natural language processing, information retrieval, and knowledge management. Similarly, link detection - a rapidly evolving approach to the analysis of text that shares and builds upon many of the key elements of text mining - also provides new tools for people to better leverage their burgeoning textual data resources. The Text Mining Handbook presents a comprehensive discussion of the state-of-the-art in text mining and link detection. In addition to providing an in-depth examination of core text mining and link detection algorithms and operations, the book examines advanced pre-processing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection in such varied fields as M&A business intelligence, genomics research and counter-terrorism activities.
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications
DOWNLOAD
Author : Gary D. Miner
language : en
Publisher: Academic Press
Release Date : 2012-01-25
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications written by Gary D. Miner and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Mathematics categories.
Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. - Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible - Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com - Glossary of text mining terms provided in the appendix
Text Mining In Practice With R
DOWNLOAD
Author : Ted Kwartler
language : en
Publisher:
Release Date : 2017
Text Mining In Practice With R written by Ted Kwartler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Data mining categories.
Text Mining With Machine Learning
DOWNLOAD
Author : Jan Žižka
language : en
Publisher: CRC Press
Release Date : 2019-10-31
Text Mining With Machine Learning written by Jan Žižka and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Computers categories.
This book provides a perspective on the application of machine learning-based methods in knowledge discovery from natural languages texts. By analysing various data sets, conclusions which are not normally evident, emerge and can be used for various purposes and applications. The book provides explanations of principles of time-proven machine learning algorithms applied in text mining together with step-by-step demonstrations of how to reveal the semantic contents in real-world datasets using the popular R-language with its implemented machine learning algorithms. The book is not only aimed at IT specialists, but is meant for a wider audience that needs to process big sets of text documents and has basic knowledge of the subject, e.g. e-mail service providers, online shoppers, librarians, etc. The book starts with an introduction to text-based natural language data processing and its goals and problems. It focuses on machine learning, presenting various algorithms with their use and possibilities, and reviews the positives and negatives. Beginning with the initial data pre-processing, a reader can follow the steps provided in the R-language including the subsuming of various available plug-ins into the resulting software tool. A big advantage is that R also contains many libraries implementing machine learning algorithms, so a reader can concentrate on the principal target without the need to implement the details of the algorithms her- or himself. To make sense of the results, the book also provides explanations of the algorithms, which supports the final evaluation and interpretation of the results. The examples are demonstrated using realworld data from commonly accessible Internet sources.
Text Mining With R
DOWNLOAD
Author : Julia Silge
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-06-12
Text Mining With R written by Julia Silge and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-12 with Computers categories.
Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.
Text Mining Techniques For Healthcare Provider Quality Determination Methods For Rank Comparisons
DOWNLOAD
Author : Cerrito, Patricia
language : en
Publisher: IGI Global
Release Date : 2009-08-31
Text Mining Techniques For Healthcare Provider Quality Determination Methods For Rank Comparisons written by Cerrito, Patricia and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-08-31 with Computers categories.
The quest for quality in healthcare has led to attempts to develop models to determine which providers have the highest quality in healthcare, with the best outcomes for patients. Text Mining Techniques for Healthcare Provider Quality Determination: Methods for Rank Comparisons discusses the general practice of defining a patient severity index in order to make risk adjustments to compare patient outcomes across multiple providers with the intent of ranking the providers in terms of quality. This innovative reference source, valuable to medical practitioners, researchers, and academicians, brings together research from across the globe focusing on how severity indices are generally defined when determining the best outcome for patient
Text Mining And Its Applications
DOWNLOAD
Author : Spiros Sirmakessis
language : en
Publisher: Springer
Release Date : 2012-12-06
Text Mining And Its Applications written by Spiros Sirmakessis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
The world of text mining is simultaneously a minefield and a gold mine. It is an exciting application field and an area of scientific research that is currently under rapid development. It uses techniques from well-established scientific fields (e.g. data mining, machine learning, information retrieval, natural language processing, case based reasoning, statistics and knowledge management) in an effort to help people gain insight, understand and interpret large quantities of (usually) semi-structured and unstructured data. Despite the advances made during the last few years, many issues remain umesolved. Proper co-ordination activities, dissemination of current trends and standardisation of the procedures have been identified, as key needs. There are many questions still unanswered, especially to the potential users; what is the scope of Text Mining, who uses it and for what purpose, what constitutes the leading trends in the field of Text Mining -especially in relation to IT- and whether there still remain areas to be covered.