Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications
DOWNLOAD
Download Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications
DOWNLOAD
Author : Gary D. Miner
language : en
Publisher: Academic Press
Release Date : 2012-01-25
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications written by Gary D. Miner and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Mathematics categories.
Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. - Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible - Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com - Glossary of text mining terms provided in the appendix
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2012
Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Data mining categories.
The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities"
Text Mining And Analysis
DOWNLOAD
Author : Dr. Goutam Chakraborty
language : en
Publisher: SAS Institute
Release Date : 2014-11-22
Text Mining And Analysis written by Dr. Goutam Chakraborty and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-22 with Computers categories.
Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.
Real World Data Mining
DOWNLOAD
Author : Dursun Delen
language : en
Publisher: FT Press
Release Date : 2014-12-16
Real World Data Mining written by Dursun Delen and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-16 with Business & Economics categories.
Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.
Text Mining
DOWNLOAD
Author : Sholom M. Weiss
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-01-08
Text Mining written by Sholom M. Weiss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-08 with Computers categories.
Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.
Text Data Management And Analysis
DOWNLOAD
Author : ChengXiang Zhai
language : en
Publisher: Morgan & Claypool
Release Date : 2016-06-30
Text Data Management And Analysis written by ChengXiang Zhai and has been published by Morgan & Claypool this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-30 with Computers categories.
Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.
Stanford Bulletin
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2006
Stanford Bulletin written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with categories.
Text Mining
DOWNLOAD
Author : Ashok N. Srivastava
language : en
Publisher: CRC Press
Release Date : 2009-06-15
Text Mining written by Ashok N. Srivastava and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-15 with Business & Economics categories.
The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te
Practical Data Analytics For Innovation In Medicine
DOWNLOAD
Author : Gary D. Miner
language : en
Publisher: Academic Press
Release Date : 2023-02-08
Practical Data Analytics For Innovation In Medicine written by Gary D. Miner and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-08 with Science categories.
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. - Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis - Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today's medical issues and basic research - Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
Text Analytics
DOWNLOAD
Author : Domenica Fioredistella Iezzi
language : en
Publisher: Springer
Release Date : 2020-11-25
Text Analytics written by Domenica Fioredistella Iezzi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Social Science categories.
Focusing on methodologies, applications and challenges of textual data analysis and related fields, this book gathers selected and peer-reviewed contributions presented at the 14th International Conference on Statistical Analysis of Textual Data (JADT 2018), held in Rome, Italy, on June 12-15, 2018. Statistical analysis of textual data is a multidisciplinary field of research that has been mainly fostered by statistics, linguistics, mathematics and computer science. The respective sections of the book focus on techniques, methods and models for text analytics, dictionaries and specific languages, multilingual text analysis, and the applications of text analytics. The interdisciplinary contributions cover topics including text mining, text analytics, network text analysis, information extraction, sentiment analysis, web mining, social media analysis, corpus and quantitative linguistics, statistical and computational methods, and textual data in sociology, psychology, politics, law and marketing.