Download Tensorflow And The Google Cloud Ml Engine For Deep Learning - eBooks (PDF)

Tensorflow And The Google Cloud Ml Engine For Deep Learning


Tensorflow And The Google Cloud Ml Engine For Deep Learning
DOWNLOAD

Download Tensorflow And The Google Cloud Ml Engine For Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tensorflow And The Google Cloud Ml Engine For Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Tensorflow And The Google Cloud Ml Engine For Deep Learning


Tensorflow And The Google Cloud Ml Engine For Deep Learning
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2018

Tensorflow And The Google Cloud Ml Engine For Deep Learning written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


"TensorFlow is quickly becoming the technology of choice for deep learning, because of how easy TF makes it to build powerful and sophisticated neural networks. The Google Cloud Platform is a great place to run TF models at scale, and perform distributed training and prediction. This is a comprehensive, from-the-basics course on TensorFlow and building neural networks. It assumes no prior knowledge of Tensorflow, all you need to know is basic Python programming."--Resource description page.



Applied Deep Learning With Tensorflow And Google Cloud Ai


Applied Deep Learning With Tensorflow And Google Cloud Ai
DOWNLOAD
Author : Christian Fanli Ramsey
language : en
Publisher:
Release Date : 2018

Applied Deep Learning With Tensorflow And Google Cloud Ai written by Christian Fanli Ramsey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


"Deep Learning uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation on large volumes of data in order to make decisions about high dimensional data. If you're looking to scale out your Deep Learning models and deploy your model into production then look no further because this video course will help you get the most out of TensorFlow and Keras to accelerate the training of your Deep Learning models and deploy your model at scale on the Cloud. Tools and frameworks such as TensorFlow, Keras, and Google Cloud MLE are used to showcase the strengths of various approaches, trade-offs, and building blocks for creating, training and evaluating your distributed deep learning models with GPU(s) and deploying your model to the Cloud. You will learn how to design and train your deep learning models and scale them out for larger datasets and complex neural network architectures on multiple GPUs using Google Cloud ML Engine. You'll learn distributed techniques such as how parallelism and distribution work using low-level TensorFlow and high-level TensorFlow APIs and Keras. Towards the end of the course, you will develop, train, and deploy your models using TensorFlow and Google Cloud Machine Learning Engine."--Resource description page.



Hands On Machine Learning On Google Cloud Platform


Hands On Machine Learning On Google Cloud Platform
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-04-30

Hands On Machine Learning On Google Cloud Platform written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-30 with Computers categories.


Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy



Google Cloud Machine Learning With Tensorflow


Google Cloud Machine Learning With Tensorflow
DOWNLOAD
Author : Tobias Zwingmann
language : en
Publisher:
Release Date : 2019

Google Cloud Machine Learning With Tensorflow written by Tobias Zwingmann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Train and predict your models using the Google Cloud ML Engine About This Video A quick and easy start with the Google Cloud platform to scale up your training and prediction Work with various practical examples to train your ML models Use your trained TensorFlow models to predict for thousands of requests In Detail TensorFlow has become the first choice for deep learning tasks because of the way it facilitates building powerful and sophisticated neural networks. The Google Cloud Platform is a great place to run TF models at scale, and perform distributed training and prediction. This course shows you how to use Google Cloud to train TensorFlow models and use them to predict results for multiple users. You will learn to efficiently train neural networks using large datasets and to serve your training models. With this video course, you will use the power of Google's Cloud Platform to train deep neural networks faster. This course supplies various examples of training in Google Cloud AI Platform. You will also learn to run predictions for your model using the cloud. You will explore topics such as cloud infrastructures, distributed training, serverless technologies, model serving, and more. By the end of the course, you will be expert at training and serving neural models, and beyond.



Introduction To Machine Learning In The Cloud With Python


Introduction To Machine Learning In The Cloud With Python
DOWNLOAD
Author : Pramod Gupta
language : en
Publisher: Springer Nature
Release Date : 2021-04-28

Introduction To Machine Learning In The Cloud With Python written by Pramod Gupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-28 with Technology & Engineering categories.


This book provides an introduction to machine learning and cloud computing, both from a conceptual level, along with their usage with underlying infrastructure. The authors emphasize fundamentals and best practices for using AI and ML in a dynamic infrastructure with cloud computing and high security, preparing readers to select and make use of appropriate techniques. Important topics are demonstrated using real applications and case studies.



Mastering Google Cloud Platform


Mastering Google Cloud Platform
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date : 2023-09-06

Mastering Google Cloud Platform written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-06 with Computers categories.


Cybellium Ltd is dedicated to empowering individuals and organizations with the knowledge and skills they need to navigate the ever-evolving computer science landscape securely and learn only the latest information available on any subject in the category of computer science including: - Information Technology (IT) - Cyber Security - Information Security - Big Data - Artificial Intelligence (AI) - Engineering - Robotics - Standards and compliance Our mission is to be at the forefront of computer science education, offering a wide and comprehensive range of resources, including books, courses, classes and training programs, tailored to meet the diverse needs of any subject in computer science. Visit https://www.cybellium.com for more books.



Google Cloud Platform An Architect S Guide


Google Cloud Platform An Architect S Guide
DOWNLOAD
Author : Alasdair Gilchrist
language : en
Publisher: Alasdair Gilchrist
Release Date :

Google Cloud Platform An Architect S Guide written by Alasdair Gilchrist and has been published by Alasdair Gilchrist this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Learn fundamental to advanced GCP architectural techniques using 30 + real-world use cases. The 'Google Cloud Platform an Architect's Guide' is a comprehensive handbook that covers everything that you need to know from GCP fundamentals to advanced cloud architecture topics. The book covers what you need to understand to pass the Google certification exams but goes far further and deeper as it explores real-world use cases and business scenarios. But you don't need to be an IT expert as the book is designed to cater for both beginners and those experienced in other cloud or on other on-premises networks. To that end, the book is split into distinct parts that caters for all levels of expertise. Part -1 is aimed at the novice someone new to a cloud architecture environment that needs to become familiar with the fundamentals of cloud architecture and industry best practices so the more experienced reader may wish to skip this section. Part-2 takes a far deeper dive into GCP theory and practice as well as providing real-world use cases and practical tips that are beneficial for architects at all levels. Part-3 delves much deeper into GCP practical theory on elasticity, scalability and resilience. It also covers Kubernetes in greater detail and touches on High-Performance Computing and IoT designs. The book closes with a final part dealing with cloud-native design practices and as such it covers design, monitoring, notification and remediation techniques to ensure best practice in cloud-native application design, deployment, stabilisation and commissioning.



Cloud Analytics With Google Cloud Platform


Cloud Analytics With Google Cloud Platform
DOWNLOAD
Author : Sanket Thodge
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-04-10

Cloud Analytics With Google Cloud Platform written by Sanket Thodge and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-10 with Computers categories.


Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.



Google Cloud Ai Services Quick Start Guide


Google Cloud Ai Services Quick Start Guide
DOWNLOAD
Author : Arvind Ravulavaru
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-30

Google Cloud Ai Services Quick Start Guide written by Arvind Ravulavaru and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-30 with Computers categories.


Leverage the power of various Google Cloud AI Services by building a smart web application using MEAN Stack Key Features Start working with the Google Cloud Platform and the AI services it offers Build smart web applications by combining the power of Google Cloud AI services and the MEAN stack Build a web-based dashboard of smart applications that perform language processing, translation, and computer vision on the cloud Book Description Cognitive services are the new way of adding intelligence to applications and services. Now we can use Artificial Intelligence as a service that can be consumed by any application or other service, to add smartness and make the end result more practical and useful. Google Cloud AI enables you to consume Artificial Intelligence within your applications, from a REST API. Text, video and speech analysis are among the powerful machine learning features that can be used. This book is the easiest way to get started with the Google Cloud AI services suite and open up the world of smarter applications. This book will help you build a Smart Exchange, a forum application that will let you upload videos, images and perform text to speech conversions and translation services. You will use the power of Google Cloud AI Services to make our simple forum application smart by validating the images, videos, and text provided by users to Google Cloud AI Services and make sure the content which is uploaded follows the forum standards, without a human curator involvement. You will learn how to work with the Vision API, Video Intelligence API, Speech Recognition API, Cloud Language Process, and Cloud Translation API services to make your application smarter. By the end of this book, you will have a strong understanding of working with Google Cloud AI Services, and be well on the way to building smarter applications. What you will learn Understand Google Cloud Platform and its Cloud AI services Explore the Google ML Services Work with an Angular 5 MEAN stack application Integrate Vision API, Video Intelligence API for computer vision Be ready for conversational experiences with the Speech Recognition API, Cloud Language Process and Cloud Translation API services Build a smart web application that uses the power of Google Cloud AI services to make apps smarter Who this book is for This book is ideal for data professionals and web developers who want to use the power of Google Cloud AI services in their projects, without the going through the pain of mastering machine learning for images, videos and text. Some familiarity with the Google Cloud Platform will be helpful.



Google Cloud Platform For Data Engineering


Google Cloud Platform For Data Engineering
DOWNLOAD
Author : Alasdair Gilchrist
language : en
Publisher: Alasdair Gilchrist
Release Date :

Google Cloud Platform For Data Engineering written by Alasdair Gilchrist and has been published by Alasdair Gilchrist this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.