Google Cloud Machine Learning With Tensorflow
DOWNLOAD
Download Google Cloud Machine Learning With Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Google Cloud Machine Learning With Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applied Deep Learning With Tensorflow And Google Cloud Ai
DOWNLOAD
Author : Christian Fanli Ramsey
language : en
Publisher:
Release Date : 2018
Applied Deep Learning With Tensorflow And Google Cloud Ai written by Christian Fanli Ramsey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
"Deep Learning uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation on large volumes of data in order to make decisions about high dimensional data. If you're looking to scale out your Deep Learning models and deploy your model into production then look no further because this video course will help you get the most out of TensorFlow and Keras to accelerate the training of your Deep Learning models and deploy your model at scale on the Cloud. Tools and frameworks such as TensorFlow, Keras, and Google Cloud MLE are used to showcase the strengths of various approaches, trade-offs, and building blocks for creating, training and evaluating your distributed deep learning models with GPU(s) and deploying your model to the Cloud. You will learn how to design and train your deep learning models and scale them out for larger datasets and complex neural network architectures on multiple GPUs using Google Cloud ML Engine. You'll learn distributed techniques such as how parallelism and distribution work using low-level TensorFlow and high-level TensorFlow APIs and Keras. Towards the end of the course, you will develop, train, and deploy your models using TensorFlow and Google Cloud Machine Learning Engine."--Resource description page.
Google Cloud Machine Learning With Tensorflow
DOWNLOAD
Author : Tobias Zwingmann
language : en
Publisher:
Release Date : 2019
Google Cloud Machine Learning With Tensorflow written by Tobias Zwingmann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Train and predict your models using the Google Cloud ML Engine About This Video A quick and easy start with the Google Cloud platform to scale up your training and prediction Work with various practical examples to train your ML models Use your trained TensorFlow models to predict for thousands of requests In Detail TensorFlow has become the first choice for deep learning tasks because of the way it facilitates building powerful and sophisticated neural networks. The Google Cloud Platform is a great place to run TF models at scale, and perform distributed training and prediction. This course shows you how to use Google Cloud to train TensorFlow models and use them to predict results for multiple users. You will learn to efficiently train neural networks using large datasets and to serve your training models. With this video course, you will use the power of Google's Cloud Platform to train deep neural networks faster. This course supplies various examples of training in Google Cloud AI Platform. You will also learn to run predictions for your model using the cloud. You will explore topics such as cloud infrastructures, distributed training, serverless technologies, model serving, and more. By the end of the course, you will be expert at training and serving neural models, and beyond.
Hands On Artificial Intelligence On Google Cloud Platform
DOWNLOAD
Author : Anand Deshpande
language : en
Publisher:
Release Date : 2020-03-06
Hands On Artificial Intelligence On Google Cloud Platform written by Anand Deshpande and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-06 with Computers categories.
Hands On Machine Learning On Google Cloud Platform
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-04-30
Hands On Machine Learning On Google Cloud Platform written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-30 with Computers categories.
Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy
Learn Tensorflow Enterprise
DOWNLOAD
Author : KC Tung
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-11-27
Learn Tensorflow Enterprise written by KC Tung and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.
Use TensorFlow Enterprise with other GCP services to improve the speed and efficiency of machine learning pipelines for reliable and stable enterprise-level deployment Key FeaturesBuild scalable, seamless, and enterprise-ready cloud-based machine learning applications using TensorFlow EnterpriseDiscover how to accelerate the machine learning development life cycle using enterprise-grade servicesManage Google’s cloud services to scale and optimize AI models in productionBook Description TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment. What you will learnDiscover how to set up a GCP TensorFlow Enterprise cloud instance and environmentHandle and format raw data that can be consumed by the TensorFlow model training processDevelop ML models and leverage prebuilt models using the TensorFlow Enterprise APIUse distributed training strategies and implement hyperparameter tuning to scale and improve your model training experimentsScale the training process by using GPU and TPU clustersAdopt the latest model optimization techniques and deployment methodologies to improve model efficiencyWho this book is for This book is for data scientists, machine learning developers or engineers, and cloud practitioners who want to learn and implement various services and features offered by TensorFlow Enterprise from scratch. Basic knowledge of the machine learning development process will be useful.
Google Certification Guide Google Professional Machine Learning Engineer
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date :
Google Certification Guide Google Professional Machine Learning Engineer written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
Google Certification Guide - Google Professional Machine Learning Engineer Unlock the World of Machine Learning on Google Cloud Embark on a transformative journey to become a Google Professional Machine Learning Engineer with this comprehensive guide. Designed for those who aspire to master the application of machine learning techniques and tools in the Google Cloud environment, this book is an essential resource for professionals seeking to harness the power of ML in their projects and workflows. What Awaits Inside: Advanced ML Concepts and Practices: Dive deep into the world of machine learning on Google Cloud, covering services like AI Platform, TensorFlow, and BigQuery ML. Real-World Applications: Learn through practical scenarios and hands-on examples, illustrating the effective implementation of machine learning models and solutions on Google Cloud. Strategic Exam Preparation: Gain crucial insights into the certification exam's structure and content, complemented by comprehensive practice questions and preparation strategies. Cutting-Edge ML Trends: Stay updated with the latest advancements in Google Cloud machine learning technologies, ensuring your skills remain relevant and innovative. Authored by a Machine Learning Expert Written by an experienced practitioner in the field of machine learning on Google Cloud, this guide bridges the gap between theoretical knowledge and practical application, offering a rich and comprehensive learning experience. Your Comprehensive Guide to ML Certification Whether you’re an experienced machine learning engineer or looking to elevate your expertise in Google Cloud's ML offerings, this book is a valuable companion, guiding you through the intricacies of machine learning in Google Cloud and preparing you for the Professional Machine Learning Engineer certification. Elevate Your Machine Learning Journey This guide is more than a pathway to certification; it's a deep dive into the practical and innovative aspects of machine learning in the Google Cloud environment, designed to equip you with the skills and knowledge for a thriving career in this dynamic field. Begin Your Machine Learning Adventure Start your journey to becoming a certified Google Professional Machine Learning Engineer. This guide is not just about passing an exam; it's about unlocking new opportunities and frontiers in the exciting world of machine learning on Google Cloud. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
Tensorflow 2 X In The Colaboratory Cloud
DOWNLOAD
Author : David Paper
language : en
Publisher: Apress
Release Date : 2021-02-04
Tensorflow 2 X In The Colaboratory Cloud written by David Paper and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-04 with Computers categories.
Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab’s default install of the most current TensorFlow 2.x along with Colab’s easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else—Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks—is provided and ready to go from Colab. The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks. This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office. What You Will Learn Be familiar with the basic concepts and constructs of applied deep learning Create machine learning models with clean and reliable Python code Work with datasets common to deep learning applications Prepare data for TensorFlow consumption Take advantage of Google Colab’s built-in support for deep learning Execute deep learning experiments using a variety of neural network models Be able to mount Google Colab directly to your Google Drive account Visualize training versus test performance to see model fit Who This Book Is For Readers who want to learn the highly popular TensorFlow 2.x deep learning platform, those who wish to master deep learning fundamentals that are sometimes skipped over in the rush to be productive, and those looking to build competency with a modern cloud service tool such as Google Colab
Building Machine Learning And Deep Learning Models On Google Cloud Platform
DOWNLOAD
Author : Ekaba Bisong
language : en
Publisher: Apress
Release Date : 2019-09-27
Building Machine Learning And Deep Learning Models On Google Cloud Platform written by Ekaba Bisong and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-27 with Computers categories.
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is dividedinto eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Tensorflow And The Google Cloud Ml Engine For Deep Learning
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2018
Tensorflow And The Google Cloud Ml Engine For Deep Learning written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
"TensorFlow is quickly becoming the technology of choice for deep learning, because of how easy TF makes it to build powerful and sophisticated neural networks. The Google Cloud Platform is a great place to run TF models at scale, and perform distributed training and prediction. This is a comprehensive, from-the-basics course on TensorFlow and building neural networks. It assumes no prior knowledge of Tensorflow, all you need to know is basic Python programming."--Resource description page.
Tensorflow 2 X In The Colaboratory Cloud
DOWNLOAD
Author : David Paper
language : en
Publisher:
Release Date : 2021
Tensorflow 2 X In The Colaboratory Cloud written by David Paper and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Artificial intelligence categories.
Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else--Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks--is provided and ready to go from Colab. The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks. This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office. You will: Be familiar with the basic concepts and constructs of applied deep learning Create machine learning models with clean and reliable Python code Work with datasets common to deep learning applications Prepare data for TensorFlow consumption Take advantage of Google Colab's built-in support for deep learning Execute deep learning experiments using a variety of neural network models Be able to mount Google Colab directly to your Google Drive account Visualize training versus test performance to see model fit.