Download Statistical Modeling And Computation - eBooks (PDF)

Statistical Modeling And Computation


Statistical Modeling And Computation
DOWNLOAD

Download Statistical Modeling And Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Modeling And Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Modeling And Computation


Statistical Modeling And Computation
DOWNLOAD
Author : Joshua C. C. Chan
language : en
Publisher: Springer Nature
Release Date : 2025-01-21

Statistical Modeling And Computation written by Joshua C. C. Chan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Computers categories.


This book, Statistical Modeling and Computation, provides a unique introduction to modern statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of mathematical statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. The 2nd edition changes the programming language used in the text from MATLAB to Julia. For all examples with computing components, the authors provide data sets and their own Julia codes. The new edition features numerous full color graphics to illustrate the concepts discussed in the text, and adds three entirely new chapters on a variety of popular topics, including: Regularization and the Lasso regression Bayesian shrinkage methods Nonparametric statistical tests Splines and the Gaussian process regression Joshua C. C. Chan is Professor of Economics, and holds the endowed Olson Chair at Purdue University. He is an elected fellow at the International Association for Applied Econometrics and served as Chair for the Economics, Finance and Business Section of the International Society for Bayesian Analysis from 2020-2022. His research focuses on building new high-dimensional time-series models and developing efficient estimation methods for these models. He has published over 50 papers in peer-reviewed journals, including some top-field journals such as Journal of Econometrics, Journal of the American Statistical Association and Journal of Business and Economic Statistics. Dirk Kroese is Professor of Mathematics and Statistics at the University of Queensland. He is known for his significant contributions to the fields of applied probability, mathematical statistics, machine learning, and Monte Carlo methods. He has published over 140 articles and 7 books. He is a pioneer of the well-known Cross-Entropy (CE) method, which is being used around the world to help solve difficult estimation and optimization problems in science, engineering, and finance. In addition to his scholarly contributions, Dirk Kroese is recognized for his role as an educator and mentor, having supervised and inspired numerous students and researchers.



Advances In Complex Data Modeling And Computational Methods In Statistics


Advances In Complex Data Modeling And Computational Methods In Statistics
DOWNLOAD
Author : Anna Maria Paganoni
language : en
Publisher: Springer
Release Date : 2014-11-04

Advances In Complex Data Modeling And Computational Methods In Statistics written by Anna Maria Paganoni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-04 with Mathematics categories.


The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.



Statistical Modeling Linear Regression And Anova A Practical Computational Perspective


Statistical Modeling Linear Regression And Anova A Practical Computational Perspective
DOWNLOAD
Author : Hamid Ismail
language : en
Publisher:
Release Date : 2018-01-21

Statistical Modeling Linear Regression And Anova A Practical Computational Perspective written by Hamid Ismail and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-21 with Reference categories.


Statistical modeling is a branch of advanced statistics and a critical component of many applications in science and business. This book is an attempt to satisfy the need of mathematical statisticians and computational students in linear modeling and ANOVA. This book addresses linear modeling from a computational perspective with an emphasis on the mathematical details and step-by-step calculations using SAS(R) PROC IML. This book covers correlation analysis, simple and multiple linear regression, polynomial regression, regression with correlated data, model selection, analysis of covariance (ANCOVA), and analysis of variance (ANOVA). The level is suitable for upper level undergraduate and graduate students with knowledge of linear algebra and some programming skills.



Time Series


Time Series
DOWNLOAD
Author : Raquel Prado
language : en
Publisher: CRC Press
Release Date : 2021-07-27

Time Series written by Raquel Prado and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-27 with Mathematics categories.


Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting. It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance. Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges. New in the second edition: Expanded on aspects of core model theory and methodology. Multiple new examples and exercises. Detailed development of dynamic factor models. Updated discussion and connections with recent and current research frontiers.



Time Series


Time Series
DOWNLOAD
Author : Raquel Prado
language : en
Publisher: CRC Press
Release Date : 2010-05-21

Time Series written by Raquel Prado and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-21 with Mathematics categories.


Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian t



Statistical Modeling With R


Statistical Modeling With R
DOWNLOAD
Author : Pablo Inchausti
language : en
Publisher: Oxford University Press
Release Date : 2023-01-16

Statistical Modeling With R written by Pablo Inchausti and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-16 with Science categories.


To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.



An Introduction To Statistical Computing


An Introduction To Statistical Computing
DOWNLOAD
Author : Jochen Voss
language : en
Publisher: John Wiley & Sons
Release Date : 2013-08-28

An Introduction To Statistical Computing written by Jochen Voss and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-28 with Mathematics categories.


A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course.



Bayesian Modeling And Computation In Python


Bayesian Modeling And Computation In Python
DOWNLOAD
Author : Osvaldo A. Martin
language : en
Publisher: CRC Press
Release Date : 2021-12-28

Bayesian Modeling And Computation In Python written by Osvaldo A. Martin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-28 with Business & Economics categories.


Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.



Statistical Modeling Using Bayesian Latent Gaussian Models


Statistical Modeling Using Bayesian Latent Gaussian Models
DOWNLOAD
Author : Birgir Hrafnkelsson
language : en
Publisher: Springer Nature
Release Date : 2023-11-08

Statistical Modeling Using Bayesian Latent Gaussian Models written by Birgir Hrafnkelsson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-08 with Mathematics categories.


This book focuses on the statistical modeling of geophysical and environmental data using Bayesian latent Gaussian models. The structure of these models is described in a thorough introductory chapter, which explains how to construct prior densities for the model parameters, how to infer the parameters using Bayesian computation, and how to use the models to make predictions. The remaining six chapters focus on the application of Bayesian latent Gaussian models to real examples in glaciology, hydrology, engineering seismology, seismology, meteorology and climatology. These examples include: spatial predictions of surface mass balance; the estimation of Antarctica’s contribution to sea-level rise; the estimation of rating curves for the projection of water level to discharge; ground motion models for strong motion; spatial modeling of earthquake magnitudes; weather forecasting based on numerical model forecasts; and extreme value analysis of precipitation on a high-dimensional grid. The book is aimed at graduate students and experts in statistics, geophysics, environmental sciences, engineering, and related fields.



Computational And Network Modeling Of Neuroimaging Data


Computational And Network Modeling Of Neuroimaging Data
DOWNLOAD
Author : Kendrick Kay
language : en
Publisher: Elsevier
Release Date : 2024-06-17

Computational And Network Modeling Of Neuroimaging Data written by Kendrick Kay and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-17 with Science categories.


Neuroimaging is witnessing a massive increase in the quality and quantity of data being acquired. It is widely recognized that effective interpretation and extraction of information from such data requires quantitative modeling. However, modeling comes in many diverse forms, with different research communities tackling different brain systems, different spatial and temporal scales, and different aspects of brain structure and function. Computational and Network Modeling of Neuroimaging Data provides an authoritative and comprehensive overview of the many diverse modeling approaches that have been fruitfully applied to neuroimaging data. This book gives an accessible foundation to the field of computational and network modeling of neuroimaging data and is suitable for graduate students, academic researchers, and industry practitioners who are interested in adopting or applying model-based approaches in neuroimaging. - Provides an authoritative and comprehensive overview of major modeling approaches to neuroimaging data - Written by experts, the book's chapters use a common structure to introduce, motivate, and describe a specific modeling approach used in neuroimaging - Gives insights into the similarities and differences across different modeling approaches - Analyses details of outstanding research challenges in the field