Download Time Series - eBooks (PDF)

Time Series


Time Series
DOWNLOAD

Download Time Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : George E. P. Box
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-02

Time Series Analysis written by George E. P. Box and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-02 with Mathematics categories.


Praise for the Fourth Edition "The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control." —Mathematical Reviews Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject. Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include: A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the exposition Time Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.



Forecasting And Time Series Analysis


Forecasting And Time Series Analysis
DOWNLOAD
Author : Douglas C. Montgomery
language : en
Publisher: McGraw-Hill Companies
Release Date : 1990

Forecasting And Time Series Analysis written by Douglas C. Montgomery and has been published by McGraw-Hill Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Mathematics categories.


This practical, user-oriented second edition describes how to use statistical modeling and analysis methods for forecasting and prediction problems. Statistical and mathematical terms are introduced only as they are needed, and every effort has been made to keep the mathematical and statistical prerequisites to a minimum. Every technique that is introduced is illustrated by fully worked numerical examples. Not only is the coverage of traditional forecasting methods greatly expanded in this new edition, but a number of new techniques and methods are covered as well.



Introduction To Time Series And Forecasting


Introduction To Time Series And Forecasting
DOWNLOAD
Author : Peter J. Brockwell
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Introduction To Time Series And Forecasting written by Peter J. Brockwell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.



Time Series Theory And Methods


Time Series Theory And Methods
DOWNLOAD
Author : Peter J. Brockwell
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-05-13

Time Series Theory And Methods written by Peter J. Brockwell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-13 with Mathematics categories.


This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition. Fort Collins, Colorado P. J. BROCKWELL November, 1990 R. A. DAVIS * /TSM: An Interactive Time Series Modelling Package for the PC by P. J. Brockwell and R. A. Davis. ISBN: 0-387-97482-2; 1991.



Time Series Models For Business And Economic Forecasting


Time Series Models For Business And Economic Forecasting
DOWNLOAD
Author : Philip Hans Franses
language : en
Publisher: Cambridge University Press
Release Date : 1998-10-15

Time Series Models For Business And Economic Forecasting written by Philip Hans Franses and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-10-15 with Business & Economics categories.


The econometric analysis of economic and business time series is a major field of research and application. The last few decades have witnessed an increasing interest in both theoretical and empirical developments in constructing time series models and in their important application in forecasting. In Time Series Models for Business and Economic Forecasting, Philip Franses examines recent developments in time series analysis. The early parts of the book focus on the typical features of time series data in business and economics. Part III is concerned with the discussion of some important concepts in time series analysis, the discussion focuses on the techniques which can be readily applied in practice. Parts IV-VIII suggest different modeling methods and model structures. Part IX extends the concepts in chapter three to multivariate time series. Part X examines common aspects across time series.



The Analysis Of Time Series


The Analysis Of Time Series
DOWNLOAD
Author : Chris Chatfield
language : en
Publisher: CRC Press
Release Date : 2003-07-29

The Analysis Of Time Series written by Chris Chatfield and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-07-29 with Mathematics categories.


Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented inter



Modeling Financial Time Series With S Plus


Modeling Financial Time Series With S Plus
DOWNLOAD
Author : Eric Zivot
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-10

Modeling Financial Time Series With S Plus written by Eric Zivot and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-10 with Business & Economics categories.


This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. It is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This edition covers S+FinMetrics 2.0 and includes new chapters.



Machine Learning For Time Series Forecasting With Python


Machine Learning For Time Series Forecasting With Python
DOWNLOAD
Author : Francesca Lazzeri
language : en
Publisher: John Wiley & Sons
Release Date : 2020-12-01

Machine Learning For Time Series Forecasting With Python written by Francesca Lazzeri and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-01 with Computers categories.


Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : William W. S. Wei
language : en
Publisher: Addison-Wesley Longman
Release Date : 2006

Time Series Analysis written by William W. S. Wei and has been published by Addison-Wesley Longman this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Overview. Fundamental Concepts. Stationary Time Series Models. Nonstationary Time Series Models. Forecasting. Model Identification. Parameter Estimation, Diagnostic Checking, and Model Selection. Seasonal Time Series Models. Testing for a Unit Root. Intervention Analysis and Outlier Detection. Fourier Analysis. Spectral Theory of Stationary Processes. Estimation of the Spectrum. Transfer Function Models. Time Series Regression and GARCH Models. Vector Time Series Models. More on Vector Time Series. State Space Models and the Kalman Filter. Long Memory and Nonlinear Processes. Aggregation and Systematic Sampling in Time Series. For all readers interested in time series analysis.



Introduction To Time Series Analysis


Introduction To Time Series Analysis
DOWNLOAD
Author : Mark Pickup
language : en
Publisher: SAGE Publications
Release Date : 2014-10-15

Introduction To Time Series Analysis written by Mark Pickup and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-15 with Social Science categories.


Introducing time series methods and their application in social science research, this practical guide to time series models is the first in the field written for a non-econometrics audience. Giving readers the tools they need to apply models to their own research, Introduction to Time Series Analysis, by Mark Pickup, demonstrates the use of—and the assumptions underlying—common models of time series data including finite distributed lag; autoregressive distributed lag; moving average; differenced data; and GARCH, ARMA, ARIMA, and error correction models. “This volume does an excellent job of introducing modern time series analysis to social scientists who are already familiar with basic statistics and the general linear model.” —William G. Jacoby, Michigan State University