R Machine Learning By Example
DOWNLOAD
Download R Machine Learning By Example PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Machine Learning By Example book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
R Machine Learning By Example
DOWNLOAD
Author : Raghav Bali
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-03-31
R Machine Learning By Example written by Raghav Bali and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-31 with Computers categories.
Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully About This Book Get to grips with the concepts of machine learning through exciting real-world examples Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning Learn to build your own machine learning system with this example-based practical guide Who This Book Is For If you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary. What You Will Learn Utilize the power of R to handle data extraction, manipulation, and exploration techniques Use R to visualize data spread across multiple dimensions and extract useful features Explore the underlying mathematical and logical concepts that drive machine learning algorithms Dive deep into the world of analytics to predict situations correctly Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action Write reusable code and build complete machine learning systems from the ground up Solve interesting real-world problems using machine learning and R as the journey unfolds Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data science In Detail Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R. Style and approach The book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.
R Machine Learning By Example
DOWNLOAD
Author : Raghav Bali
language : en
Publisher:
Release Date : 2016
R Machine Learning By Example written by Raghav Bali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Computers categories.
Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfullyAbout This Book* Get to grips with the concepts of machine learning through exciting real-world examples* Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning* Learn to build your own machine learning system with this example-based practical guideWho This Book Is ForIf you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary.What You Will Learn* Utilize the power of R to handle data extraction, manipulation, and exploration techniques* Use R to visualize data spread across multiple dimensions and extract useful features* Explore the underlying mathematical and logical concepts that drive machine learning algorithms* Dive deep into the world of analytics to predict situations correctly* Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action* Write reusable code and build complete machine learning systems from the ground up* Solve interesting real-world problems using machine learning and R as the journey unfolds* Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data scienceIn DetailData science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems.This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems.You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms.Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.Style and approachThe book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.
Practical Machine Learning In R
DOWNLOAD
Author : Fred Nwanganga
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-10
Practical Machine Learning In R written by Fred Nwanganga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.
Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07
Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
R Programming For Machine Learning
DOWNLOAD
Author : Peter Simon
language : en
Publisher: Peter Simon
Release Date :
R Programming For Machine Learning written by Peter Simon and has been published by Peter Simon this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
Master Machine Learning Using R — Build Powerful Predictive Models with Confidence! Are you eager to unlock the potential of machine learning in R Studio but unsure how to start? Whether you’re a complete beginner or an analyst looking to expand your skills, R Programming for Machine Learning is the perfect guide to learn how to apply machine learning techniques using the versatile R programming language. This book offers a comprehensive introduction to using R for machine learning, covering essential algorithms and real-world examples that empower you to build accurate predictive models. What You’ll Gain from This Machine Learning Course in R: Learn R Programming in Machine Learning Context Discover why the R language for machine learning is widely favored for data science, and how to leverage it to build models. Supervised Learning Techniques in R Master regression and classification methods to predict outcomes and categorize data efficiently. Unsupervised Learning in R Studio Explore clustering and pattern detection with hands-on examples. Model Validation and Optimization Learn how to evaluate your models and improve performance using practical techniques. Step-by-Step R Programming Classes Designed for learners who want a structured R programming course focused on machine learning applications. Why Choose This Book? 🧠 Ideal for Beginners and Intermediate Learners — Whether you want to learn R programming from scratch or deepen your knowledge of machine learning with R. 💻 Practical and Hands-On — Learn by doing, with examples and projects that bring R coding concepts to life. 📊 Focus on Data Science with R — Build skills that are in high demand across industries. 🎓 Comprehensive Learning Path — From basics to advanced topics in an easy-to-follow format that mimics a top-tier machine learning in R course. Who Should Get This Book? Beginners eager to learn R language for data science and machine learning Data analysts and scientists looking to apply R programming in machine learning Students taking machine learning course in R or machine learning with R course online Anyone passionate about mastering the R programming language for AI and predictive analytics Start building intelligent models today with the power of R programming for machine learning. 🛒 Order your copy now and transform your data skills with R!
Deep Learning With R For Beginners
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20
Deep Learning With R For Beginners written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key FeaturesGet to grips with the fundamentals of deep learning and neural networksUse R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processingImplement effective deep learning systems in R with the help of end-to-end projectsBook Description Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. This Learning Path includes content from the following Packt products: R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark HodnettR Deep Learning Projects by Yuxi (Hayden) Liu and Pablo MaldonadoWhat you will learnImplement credit card fraud detection with autoencodersTrain neural networks to perform handwritten digit recognition using MXNetReconstruct images using variational autoencodersExplore the applications of autoencoder neural networks in clustering and dimensionality reductionCreate natural language processing (NLP) models using Keras and TensorFlow in RPrevent models from overfitting the data to improve generalizabilityBuild shallow neural network prediction modelsWho this book is for This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.
Machine Learning With R
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-15
Machine Learning With R written by Brett Lantz and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.
Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks — the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.
Machine Learning Made Easy With R
DOWNLOAD
Author : N. Lewis
language : en
Publisher:
Release Date : 2017-05-07
Machine Learning Made Easy With R written by N. Lewis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-07 with categories.
Finally, A Blueprint for Machine Learning with R! Machine Learning Made Easy with R offers a practical tutorial that uses hands-on examples to step through real-world applications using clear and practical case studies. Through this process it takes you on a gentle, fun and unhurried journey to creating machine learning models with R. Whether you are new to data science or a veteran, this book offers a powerful set of tools for quickly and easily gaining insight from your data using R. NO EXPERIENCE REQUIRED: This book uses plain language rather than a ton of equations; I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to try successful machine learning algorithms for yourself. YOUR PERSONAL BLUE PRINT: Through a simple to follow intuitive step by step process, you will learn how to use the most popular machine learning algorithms using R. Once you have mastered the process, it will be easy for you to translate your knowledge to assess your own data. THIS BOOK IS FOR YOU IF YOU WANT: Focus on explanations rather than mathematical derivation Practical illustrations that use real data. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: This guide was written for people just like you. Individuals who want to get up to speed as quickly as possible. to: YOU'LL LEARN HOW TO: Unleash the power of Decision Trees. Develop hands on skills using k-Nearest Neighbors. Design successful applications with Naive Bayes. Deploy Linear Discriminant Analysis. Explore Support Vector Machines. Master Linear and logistic regression. Create solutions with Random Forests. Solve complex problems with Boosting. Gain deep insights via K-Means clustering. Acquire tips to enhance model performance. For each machine learning algorithm, every step in the process is detailed, from preparing the data for analysis, to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. Everything you need to get started is contained within this book. Machine Learning Made Easy with R is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!
Deep Learning With R Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2022-09-13
Deep Learning With R Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-13 with Computers categories.
Deep learning from the ground up using R and the powerful Keras library! In Deep Learning with R, Second Edition you will learn: Deep learning from first principles Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks. About the technology Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R. About the book Deep Learning with R, Second Edition is a hands-on guide to deep learning using the R language. As you move through this book, you’ll quickly lock in the foundational ideas of deep learning. The intuitive explanations, crisp illustrations, and clear examples guide you through core DL skills like image processing and text manipulation, and even advanced features like transformers. This revised and expanded new edition is adapted from Deep Learning with Python, Second Edition by François Chollet, the creator of the Keras library. What's inside Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation About the reader For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required. About the author François Chollet is a software engineer at Google and creator of Keras. Tomasz Kalinowski is a software engineer at RStudio and maintainer of the Keras and Tensorflow R packages. J.J. Allaire is the founder of RStudio, and the author of the first edition of this book. Table of Contents 1 What is deep learning? 2 The mathematical building blocks of neural networks 3 Introduction to Keras and TensorFlow 4 Getting started with neural networks: Classification and regression 5 Fundamentals of machine learning 6 The universal workflow of machine learning 7 Working with Keras: A deep dive 8 Introduction to deep learning for computer vision 9 Advanced deep learning for computer vision 10 Deep learning for time series 11 Deep learning for text 12 Generative deep learning 13 Best practices for the real world 14 Conclusions
Mastering Machine Learning With R
DOWNLOAD
Author : Cory Lesmeister
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Mastering Machine Learning With R written by Cory Lesmeister and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.