Python Data Science Cookbook
DOWNLOAD
Download Python Data Science Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Data Science Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Data Science Cookbook
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-29
Practical Data Science Cookbook written by Prabhanjan Tattar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-29 with Computers categories.
Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
Python Data Science Cookbook
DOWNLOAD
Author : Gopi Subramanian
language : en
Publisher: Packt Publishing
Release Date : 2015-11-11
Python Data Science Cookbook written by Gopi Subramanian and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-11 with Computers categories.
Over 60 practical recipes to help you explore Python and its robust data science capabilitiesAbout This Book• The book is packed with simple and concise Python code examples to effectively demonstrate advanced concepts in action• Explore concepts such as programming, data mining, data analysis, data visualization, and machine learning using Python• Get up to speed on machine learning algorithms with the help of easy-to-follow, insightful recipesWho This Book Is ForThis book is intended for all levels of Data Science professionals, both students and practitioners, starting from novice to experts. Novices can spend their time in the first five chapters getting themselves acquainted with Data Science. Experts can refer to the chapters starting from 6 to understand how advanced techniques are implemented using Python. People from non-Python backgrounds can also effectively use this book, but it would be helpful if you have some prior basic programming experience.What You Will Learn• Explore the complete range of Data Science algorithms• Get to know the tricks used by industry engineers to create the most accurate data science models• Manage and use Python libraries such as numpy, scipy, scikit learn, and matplotlib effectively• Create meaningful features to solve real-world problems• Take a look at Advanced Regression methods for model building and variable selection• Get a thorough understanding of the underlying concepts and implementation of Ensemble methods• Solve real-world problems using a variety of different datasets from numerical and text data modalities• Get accustomed to modern state-of-the art algorithms such as Gradient Boosting, Random Forest, Rotation Forest, and so onIn DetailPython is increasingly becoming the language for data science. It is overtaking R in terms of adoption, it is widely known by many developers, and has a strong set of libraries such as Numpy, Pandas, scikit-learn, Matplotlib, Ipython and Scipy, to support its usage in this field. Data Science is the emerging new hot tech field, which is an amalgamation of different disciplines including statistics, machine learning, and computer science. It's a disruptive technology changing the face of today's business and altering the economy of various verticals including retail, manufacturing, online ventures, and hospitality, to name a few, in a big way.This book will walk you through the various steps, starting from simple to the most complex algorithms available in the Data Science arsenal, to effectively mine data and derive intelligence from it. At every step, we provide simple and efficient Python recipes that will not only show you how to implement these algorithms, but also clarify the underlying concept thoroughly.The book begins by introducing you to using Python for Data Science, followed by working with Python environments. You will then learn how to analyse your data with Python. The book then teaches you the concepts of data mining followed by an extensive coverage of machine learning methods. It introduces you to a number of Python libraries available to help implement machine learning and data mining routines effectively. It also covers the principles of shrinkage, ensemble methods, random forest, rotation forest, and extreme trees, which are a must-have for any successful Data Science Professional.Style and approachThis is a step-by-step recipe-based approach to Data Science algorithms, introducing the math philosophy behind these algorithms.
Python Data Analysis Cookbook
DOWNLOAD
Author : Ivan Idris
language : en
Publisher:
Release Date : 2016-07-22
Python Data Analysis Cookbook written by Ivan Idris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-22 with Computers categories.
Time Series Analysis With Python Cookbook
DOWNLOAD
Author : Tarek A. Atwan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2026-01-16
Time Series Analysis With Python Cookbook written by Tarek A. Atwan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2026-01-16 with Computers categories.
Perform time series analysis and forecasting confidently with this Python code bank and reference manual. Access exclusive GitHub bonus chapters and hands-on recipes covering Python setup, probabilistic deep learning forecasts, frequency-domain analysis, large-scale data handling, databases, InfluxDB, and advanced visualizations. Purchase of the print or Kindle book includes a free PDF eBook Key Features Explore up-to-date forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms Learn different techniques for evaluating, diagnosing, and optimizing your models Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities Book DescriptionTo use time series data to your advantage, you need to master data preparation, analysis, and forecasting. This fully refreshed second edition helps you unlock insights from time series data with new chapters on probabilistic models, signal processing techniques, and new content on transformers. You’ll work with the latest releases of popular libraries like Pandas, Polars, Sktime, stats models, stats forecast, Darts, and Prophet through up-to-date examples. You'll hit the ground running by ingesting time series data from various sources and formats and learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods. Through detailed instructions, you'll explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR, and learn practical techniques for handling non-stationary data using power transforms, ACF and PACF plots, and decomposing time series data with seasonal patterns. The recipes then level up to cover more advanced topics such as building ML and DL models using TensorFlow and PyTorch and applying probabilistic modeling techniques. In this part, you’ll also be able to evaluate, compare, and optimize models, finishing with a strong command of wrangling data with Python.What you will learn Understand what makes time series data different from other data Apply imputation and interpolation strategies to handle missing data Implement an array of models for univariate and multivariate time series Plot interactive time series visualizations using hvPlot Explore state-space models and the unobserved components model (UCM) Detect anomalies using statistical and machine learning methods Forecast complex time series with multiple seasonal patterns Use conformal prediction for constructing prediction intervals for time series Who this book is for This book is for data analysts, business analysts, data scientists, data engineers, and Python developers who want to learn time series analysis and forecasting techniques step by step through practical Python recipes. To get the most out of this book, you’ll need fundamental Python programming knowledge. Prior experience working with time series data to solve business problems will help you to better utilize and apply the recipes more quickly.
DOWNLOAD
Author :
language : en
Publisher:
Release Date :
written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Python Data Cleaning Cookbook
DOWNLOAD
Author : Michael Walker
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-12-11
Python Data Cleaning Cookbook written by Michael Walker and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-11 with Computers categories.
Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key FeaturesGet well-versed with various data cleaning techniques to reveal key insightsManipulate data of different complexities to shape them into the right form as per your business needsClean, monitor, and validate large data volumes to diagnose problems before moving on to data analysisBook Description Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learnFind out how to read and analyze data from a variety of sourcesProduce summaries of the attributes of data frames, columns, and rowsFilter data and select columns of interest that satisfy given criteriaAddress messy data issues, including working with dates and missing valuesImprove your productivity in Python pandas by using method chainingUse visualizations to gain additional insights and identify potential data issuesEnhance your ability to learn what is going on in your dataBuild user-defined functions and classes to automate data cleaningWho this book is for This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.
Python Data Science Cookbook
DOWNLOAD
Author : Taryn Voska
language : en
Publisher: GitforGits
Release Date : 2025-02-10
Python Data Science Cookbook written by Taryn Voska and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-10 with Computers categories.
This book's got a bunch of handy recipes for data science pros to get them through the most common challenges they face when using Python tools and libraries. Each recipe shows you exactly how to do something step-by-step. You can load CSVs directly from a URL, flatten nested JSON, query SQL and NoSQL databases, import Excel sheets, or stream large files in memory-safe batches. Once the data's loaded, you'll find simple ways to spot and fill in missing values, standardize categories that are off, clip outliers, normalize features, get rid of duplicates, and extract the year, month, or weekday from timestamps. You'll learn how to run quick analyses, like generating descriptive statistics, plotting histograms and correlation heatmaps, building pivot tables, creating scatter-matrix plots, and drawing time-series line charts to spot trends. You'll learn how to build polynomial features, compare MinMax, Standard, and Robust scaling, smooth data with rolling averages, apply PCA to reduce dimensions, and encode high-cardinality fields with sparse one-hot encoding using feature engineering recipes. As for machine learning, you'll learn to put together end-to-end pipelines that handle imputation, scaling, feature selection, and modeling in one object, create custom transformers, automate hyperparameter searches with GridSearchCV, save and load your pipelines, and let SelectKBest pick the top features automatically. You'll learn how to test hypotheses with t-tests and chi-square tests, build linear and Ridge regressions, work with decision trees and random forests, segment countries using clustering, and evaluate models using MSE, classification reports, and ROC curves. And you'll finally get a handle on debugging and integration: fixing pandas merge errors, correcting NumPy broadcasting mismatches, and making sure your plots are consistent. Key Learnings You can load remote CSVs directly into pandas using read_csv, so you don't have to deal with manual downloads and file clutter. Use json_normalize to convert nested JSON responses into simple tables, making it a breeze to analyze. You can query relational and NoSQL databases directly from Python, and the results will merge seamlessly into Pandas. Find and fill in missing values using IGNSA(), forward-fill, and median strategies for all of your data over time. You can free up a lot of memory by turning string columns into Pandas' Categorical dtype. You can speed up computations with NumPy vectorization and chunked CSV reading to prevent RAM exhaustion. You can build feature pipelines using custom transformers, scaling, and automated hyperparameter tuning with GridSearchCV. Use regression, tree-based, and clustering algorithms to show linear, nonlinear, and group-specific vaccination patterns. Evaluate models using MSE, R², precision, recall, and ROC curves to assess their performance. Set up automated data retrieval with scheduled API pulls, cloud storage, Kafka streams, and GraphQL queries. Table of Content Data Ingestion from Multiple Sources Preprocessing and Cleaning Complex Datasets Performing Quick Exploratory Analysis Optimizing Data Structures and Performance Feature Engineering and Transformation Building Machine Learning Pipelines Implementing Statistical and Machine Learning Techniques Debugging and Troubleshooting Advanced Data Retrieval and Integration
Practical Data Science Cookbook Second Edition
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher:
Release Date : 2017-06-29
Practical Data Science Cookbook Second Edition written by Prabhanjan Tattar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-29 with Data mining categories.
Over 85 recipes to help you complete real-world data science projects in R and PythonAbout This Book* Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data* Get beyond the theory and implement real-world projects in data science using R and Python* Easy-to-follow recipes will help you understand and implement the numerical computing conceptsWho This Book Is ForIf you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python.What You Will Learn* Learn and understand the installation procedure and environment required for R and Python on various platforms* Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python* Build a predictive model and an exploratory model* Analyze the results of your model and create reports on the acquired data* Build various tree-based methods and Build random forestIn DetailAs increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use.Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis--R and Python.Style and approachThis step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization
Practical Data Science Cookbook
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher:
Release Date : 2017
Practical Data Science Cookbook written by Prabhanjan Tattar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Data mining categories.
Machine Learning With Python Cookbook
DOWNLOAD
Author : Kyle Gallatin
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-07-27
Machine Learning With Python Cookbook written by Kyle Gallatin and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-27 with Computers categories.
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks