Download Python Data Analysis Cookbook - eBooks (PDF)

Python Data Analysis Cookbook


Python Data Analysis Cookbook
DOWNLOAD

Download Python Data Analysis Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Data Analysis Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Python Data Analysis Cookbook


Python Data Analysis Cookbook
DOWNLOAD
Author : Ivan Idris
language : en
Publisher:
Release Date : 2016-07-22

Python Data Analysis Cookbook written by Ivan Idris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-22 with Computers categories.




Time Series Analysis With Python Cookbook


Time Series Analysis With Python Cookbook
DOWNLOAD
Author : Tarek A. Atwan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2026-01-16

Time Series Analysis With Python Cookbook written by Tarek A. Atwan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2026-01-16 with Computers categories.


Perform time series analysis and forecasting confidently with this Python code bank and reference manual. Access exclusive GitHub bonus chapters and hands-on recipes covering Python setup, probabilistic deep learning forecasts, frequency-domain analysis, large-scale data handling, databases, InfluxDB, and advanced visualizations. Purchase of the print or Kindle book includes a free PDF eBook Key Features Explore up-to-date forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms Learn different techniques for evaluating, diagnosing, and optimizing your models Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities Book DescriptionTo use time series data to your advantage, you need to master data preparation, analysis, and forecasting. This fully refreshed second edition helps you unlock insights from time series data with new chapters on probabilistic models, signal processing techniques, and new content on transformers. You’ll work with the latest releases of popular libraries like Pandas, Polars, Sktime, stats models, stats forecast, Darts, and Prophet through up-to-date examples. You'll hit the ground running by ingesting time series data from various sources and formats and learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods. Through detailed instructions, you'll explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR, and learn practical techniques for handling non-stationary data using power transforms, ACF and PACF plots, and decomposing time series data with seasonal patterns. The recipes then level up to cover more advanced topics such as building ML and DL models using TensorFlow and PyTorch and applying probabilistic modeling techniques. In this part, you’ll also be able to evaluate, compare, and optimize models, finishing with a strong command of wrangling data with Python.What you will learn Understand what makes time series data different from other data Apply imputation and interpolation strategies to handle missing data Implement an array of models for univariate and multivariate time series Plot interactive time series visualizations using hvPlot Explore state-space models and the unobserved components model (UCM) Detect anomalies using statistical and machine learning methods Forecast complex time series with multiple seasonal patterns Use conformal prediction for constructing prediction intervals for time series Who this book is for This book is for data analysts, business analysts, data scientists, data engineers, and Python developers who want to learn time series analysis and forecasting techniques step by step through practical Python recipes. To get the most out of this book, you’ll need fundamental Python programming knowledge. Prior experience working with time series data to solve business problems will help you to better utilize and apply the recipes more quickly.



Practical Data Science Cookbook


Practical Data Science Cookbook
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-29

Practical Data Science Cookbook written by Prabhanjan Tattar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-29 with Computers categories.


Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data Get beyond the theory and implement real-world projects in data science using R and Python Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn Learn and understand the installation procedure and environment required for R and Python on various platforms Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python Build a predictive model and an exploratory model Analyze the results of your model and create reports on the acquired data Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization



Python Data Science Cookbook


Python Data Science Cookbook
DOWNLOAD
Author : Gopi Subramanian
language : en
Publisher: Packt Publishing
Release Date : 2015-11-11

Python Data Science Cookbook written by Gopi Subramanian and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-11 with Computers categories.


Over 60 practical recipes to help you explore Python and its robust data science capabilitiesAbout This Book• The book is packed with simple and concise Python code examples to effectively demonstrate advanced concepts in action• Explore concepts such as programming, data mining, data analysis, data visualization, and machine learning using Python• Get up to speed on machine learning algorithms with the help of easy-to-follow, insightful recipesWho This Book Is ForThis book is intended for all levels of Data Science professionals, both students and practitioners, starting from novice to experts. Novices can spend their time in the first five chapters getting themselves acquainted with Data Science. Experts can refer to the chapters starting from 6 to understand how advanced techniques are implemented using Python. People from non-Python backgrounds can also effectively use this book, but it would be helpful if you have some prior basic programming experience.What You Will Learn• Explore the complete range of Data Science algorithms• Get to know the tricks used by industry engineers to create the most accurate data science models• Manage and use Python libraries such as numpy, scipy, scikit learn, and matplotlib effectively• Create meaningful features to solve real-world problems• Take a look at Advanced Regression methods for model building and variable selection• Get a thorough understanding of the underlying concepts and implementation of Ensemble methods• Solve real-world problems using a variety of different datasets from numerical and text data modalities• Get accustomed to modern state-of-the art algorithms such as Gradient Boosting, Random Forest, Rotation Forest, and so onIn DetailPython is increasingly becoming the language for data science. It is overtaking R in terms of adoption, it is widely known by many developers, and has a strong set of libraries such as Numpy, Pandas, scikit-learn, Matplotlib, Ipython and Scipy, to support its usage in this field. Data Science is the emerging new hot tech field, which is an amalgamation of different disciplines including statistics, machine learning, and computer science. It's a disruptive technology changing the face of today's business and altering the economy of various verticals including retail, manufacturing, online ventures, and hospitality, to name a few, in a big way.This book will walk you through the various steps, starting from simple to the most complex algorithms available in the Data Science arsenal, to effectively mine data and derive intelligence from it. At every step, we provide simple and efficient Python recipes that will not only show you how to implement these algorithms, but also clarify the underlying concept thoroughly.The book begins by introducing you to using Python for Data Science, followed by working with Python environments. You will then learn how to analyse your data with Python. The book then teaches you the concepts of data mining followed by an extensive coverage of machine learning methods. It introduces you to a number of Python libraries available to help implement machine learning and data mining routines effectively. It also covers the principles of shrinkage, ensemble methods, random forest, rotation forest, and extreme trees, which are a must-have for any successful Data Science Professional.Style and approachThis is a step-by-step recipe-based approach to Data Science algorithms, introducing the math philosophy behind these algorithms.



Python Data Cleaning Cookbook


Python Data Cleaning Cookbook
DOWNLOAD
Author : Michael Walker
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-12-11

Python Data Cleaning Cookbook written by Michael Walker and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-11 with Computers categories.


Discover how to describe your data in detail, identify data issues, and find out how to solve them using commonly used techniques and tips and tricks Key FeaturesGet well-versed with various data cleaning techniques to reveal key insightsManipulate data of different complexities to shape them into the right form as per your business needsClean, monitor, and validate large data volumes to diagnose problems before moving on to data analysisBook Description Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it. What you will learnFind out how to read and analyze data from a variety of sourcesProduce summaries of the attributes of data frames, columns, and rowsFilter data and select columns of interest that satisfy given criteriaAddress messy data issues, including working with dates and missing valuesImprove your productivity in Python pandas by using method chainingUse visualizations to gain additional insights and identify potential data issuesEnhance your ability to learn what is going on in your dataBuild user-defined functions and classes to automate data cleaningWho this book is for This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data. Working knowledge of Python programming is all you need to get the most out of the book.



Python Data Science Cookbook


Python Data Science Cookbook
DOWNLOAD
Author : Taryn Voska
language : en
Publisher: GitforGits
Release Date : 2025-02-10

Python Data Science Cookbook written by Taryn Voska and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-10 with Computers categories.


This book's got a bunch of handy recipes for data science pros to get them through the most common challenges they face when using Python tools and libraries. Each recipe shows you exactly how to do something step-by-step. You can load CSVs directly from a URL, flatten nested JSON, query SQL and NoSQL databases, import Excel sheets, or stream large files in memory-safe batches. Once the data's loaded, you'll find simple ways to spot and fill in missing values, standardize categories that are off, clip outliers, normalize features, get rid of duplicates, and extract the year, month, or weekday from timestamps. You'll learn how to run quick analyses, like generating descriptive statistics, plotting histograms and correlation heatmaps, building pivot tables, creating scatter-matrix plots, and drawing time-series line charts to spot trends. You'll learn how to build polynomial features, compare MinMax, Standard, and Robust scaling, smooth data with rolling averages, apply PCA to reduce dimensions, and encode high-cardinality fields with sparse one-hot encoding using feature engineering recipes. As for machine learning, you'll learn to put together end-to-end pipelines that handle imputation, scaling, feature selection, and modeling in one object, create custom transformers, automate hyperparameter searches with GridSearchCV, save and load your pipelines, and let SelectKBest pick the top features automatically. You'll learn how to test hypotheses with t-tests and chi-square tests, build linear and Ridge regressions, work with decision trees and random forests, segment countries using clustering, and evaluate models using MSE, classification reports, and ROC curves. And you'll finally get a handle on debugging and integration: fixing pandas merge errors, correcting NumPy broadcasting mismatches, and making sure your plots are consistent. Key Learnings You can load remote CSVs directly into pandas using read_csv, so you don't have to deal with manual downloads and file clutter. Use json_normalize to convert nested JSON responses into simple tables, making it a breeze to analyze. You can query relational and NoSQL databases directly from Python, and the results will merge seamlessly into Pandas. Find and fill in missing values using IGNSA(), forward-fill, and median strategies for all of your data over time. You can free up a lot of memory by turning string columns into Pandas' Categorical dtype. You can speed up computations with NumPy vectorization and chunked CSV reading to prevent RAM exhaustion. You can build feature pipelines using custom transformers, scaling, and automated hyperparameter tuning with GridSearchCV. Use regression, tree-based, and clustering algorithms to show linear, nonlinear, and group-specific vaccination patterns. Evaluate models using MSE, R², precision, recall, and ROC curves to assess their performance. Set up automated data retrieval with scheduled API pulls, cloud storage, Kafka streams, and GraphQL queries. Table of Content Data Ingestion from Multiple Sources Preprocessing and Cleaning Complex Datasets Performing Quick Exploratory Analysis Optimizing Data Structures and Performance Feature Engineering and Transformation Building Machine Learning Pipelines Implementing Statistical and Machine Learning Techniques Debugging and Troubleshooting Advanced Data Retrieval and Integration



Practical Data Science Cookbook


Practical Data Science Cookbook
DOWNLOAD
Author : Prabhanjan Tattar
language : en
Publisher:
Release Date : 2017

Practical Data Science Cookbook written by Prabhanjan Tattar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Data mining categories.




Exploratory Data Analysis With Python Cookbook


Exploratory Data Analysis With Python Cookbook
DOWNLOAD
Author : Ayodele Oluleye
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-06-30

Exploratory Data Analysis With Python Cookbook written by Ayodele Oluleye and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Computers categories.


Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide Purchase of the print or Kindle book includes a free PDF eBook Key Features Gain practical experience in conducting EDA on a single variable of interest in Python Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn Book DescriptionIn today's data-centric world, the ability to extract meaningful insights from vast amounts of data has become a valuable skill across industries. Exploratory Data Analysis (EDA) lies at the heart of this process, enabling us to comprehend, visualize, and derive valuable insights from various forms of data. This book is a comprehensive guide to Exploratory Data Analysis using the Python programming language. It provides practical steps needed to effectively explore, analyze, and visualize structured and unstructured data. It offers hands-on guidance and code for concepts such as generating summary statistics, analyzing single and multiple variables, visualizing data, analyzing text data, handling outliers, handling missing values and automating the EDA process. It is suited for data scientists, data analysts, researchers or curious learners looking to gain essential knowledge and practical steps for analyzing vast amounts of data to uncover insights. Python is an open-source general purpose programming language which is used widely for data science and data analysis given its simplicity and versatility. It offers several libraries which can be used to clean, analyze, and visualize data. In this book, we will explore popular Python libraries such as Pandas, Matplotlib, and Seaborn and provide workable code for analyzing data in Python using these libraries. By the end of this book, you will have gained comprehensive knowledge about EDA and mastered the powerful set of EDA techniques and tools required for analyzing both structured and unstructured data to derive valuable insights.What you will learn Perform EDA with leading python data visualization libraries Execute univariate, bivariate and multivariate analysis on tabular data Uncover patterns and relationships within time series data Identify hidden patterns within textual data Learn different techniques to prepare data for analysis Overcome challenge of outliers and missing values during data analysis Leverage automated EDA for fast and efficient analysis Who this book is forWhether you are a data analyst, data scientist, researcher or a curious learner looking to analyze structured and unstructured data, this book will appeal to you. It aims to empower you with essential knowledge and practical skills for analyzing and visualizing data to uncover insights. It covers several EDA concepts and provides hands-on instructions on how these can be applied using various Python libraries. Familiarity with basic statistical concepts and foundational knowledge of python programming will help you understand the content better and maximize your learning experience.



Pandas Cookbook


Pandas Cookbook
DOWNLOAD
Author : Theodore Petrou
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-10-23

Pandas Cookbook written by Theodore Petrou and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-23 with Computers categories.


Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve most complex scientific computing problems with ease Leverage fast, robust data structures in pandas to gain useful insights from your data Practical, easy to implement recipes for quick solutions to common problems in data using pandas Who This Book Is For This book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory. What You Will Learn Master the fundamentals of pandas to quickly begin exploring any dataset Isolate any subset of data by properly selecting and querying the data Split data into independent groups before applying aggregations and transformations to each group Restructure data into tidy form to make data analysis and visualization easier Prepare real-world messy datasets for machine learning Combine and merge data from different sources through pandas SQL-like operations Utilize pandas unparalleled time series functionality Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and Seaborn In Detail This book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter. Many advanced recipes combine several different features across the pandas library to generate results. Style and approach The author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.



Pandas 1 X Cookbook


Pandas 1 X Cookbook
DOWNLOAD
Author : Matt Harrison
language : en
Publisher: Packt Publishing
Release Date : 2020-02-27

Pandas 1 X Cookbook written by Matt Harrison and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-27 with categories.


Use the power of pandas to solve most complex scientific computing problems with ease. Revised for pandas 1.x. Key Features This is the first book on pandas 1.x Practical, easy to implement recipes for quick solutions to common problems in data using pandas Master the fundamentals of pandas to quickly begin exploring any dataset Book Description The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands as one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through situations that you are highly likely to encounter. This new updated and revised edition provides you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. Many advanced recipes combine several different features across the pandas library to generate results. What you will learn Master data exploration in pandas through dozens of practice problems Group, aggregate, transform, reshape, and filter data Merge data from different sources through pandas SQL-like operations Create visualizations via pandas hooks to matplotlib and seaborn Use pandas, time series functionality to perform powerful analyses Import, clean, and prepare real-world datasets for machine learning Create workflows for processing big data that doesn't fit in memory Who this book is for This book is for Python developers, data scientists, engineers, and analysts. Pandas is the ideal tool for manipulating structured data with Python and this book provides ample instruction and examples. Not only does it cover the basics required to be proficient, but it goes into the details of idiomatic pandas.