Production Ready Applied Deep Learning
DOWNLOAD
Download Production Ready Applied Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Production Ready Applied Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Production Ready Applied Deep Learning
DOWNLOAD
Author : Tomasz Palczewski
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-08-30
Production Ready Applied Deep Learning written by Tomasz Palczewski and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-30 with Computers categories.
Supercharge your skills for developing powerful deep learning models and distributing them at scale efficiently using cloud services Key Features Understand how to execute a deep learning project effectively using various tools available Learn how to develop PyTorch and TensorFlow models at scale using Amazon Web Services Explore effective solutions to various difficulties that arise from model deployment Book Description Machine learning engineers, deep learning specialists, and data engineers encounter various problems when moving deep learning models to a production environment. The main objective of this book is to close the gap between theory and applications by providing a thorough explanation of how to transform various models for deployment and efficiently distribute them with a full understanding of the alternatives. First, you will learn how to construct complex deep learning models in PyTorch and TensorFlow. Next, you will acquire the knowledge you need to transform your models from one framework to the other and learn how to tailor them for specific requirements that deployment environments introduce. The book also provides concrete implementations and associated methodologies that will help you apply the knowledge you gain right away. You will get hands-on experience with commonly used deep learning frameworks and popular cloud services designed for data analytics at scale. Additionally, you will get to grips with the authors' collective knowledge of deploying hundreds of AI-based services at a large scale. By the end of this book, you will have understood how to convert a model developed for proof of concept into a production-ready application optimized for a particular production setting. What you will learn Understand how to develop a deep learning model using PyTorch and TensorFlow Convert a proof-of-concept model into a production-ready application Discover how to set up a deep learning pipeline in an efficient way using AWS Explore different ways to compress a model for various deployment requirements Develop Android and iOS applications that run deep learning on mobile devices Monitor a system with a deep learning model in production Choose the right system architecture for developing and deploying a model Who this book is for Machine learning engineers, deep learning specialists, and data scientists will find this book helpful in closing the gap between the theory and application with detailed examples. Beginner-level knowledge in machine learning or software engineering will help you grasp the concepts covered in this book easily.
R Machine Learning By Example
DOWNLOAD
Author : Raghav Bali
language : en
Publisher:
Release Date : 2016
R Machine Learning By Example written by Raghav Bali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Computers categories.
Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfullyAbout This Book* Get to grips with the concepts of machine learning through exciting real-world examples* Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning* Learn to build your own machine learning system with this example-based practical guideWho This Book Is ForIf you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary.What You Will Learn* Utilize the power of R to handle data extraction, manipulation, and exploration techniques* Use R to visualize data spread across multiple dimensions and extract useful features* Explore the underlying mathematical and logical concepts that drive machine learning algorithms* Dive deep into the world of analytics to predict situations correctly* Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action* Write reusable code and build complete machine learning systems from the ground up* Solve interesting real-world problems using machine learning and R as the journey unfolds* Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data scienceIn DetailData science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems.This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems.You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms.Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.Style and approachThe book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.
Machine Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1984
Machine Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Engineering categories.
Applied Deep Learning With Python
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Applied Deep Learning With Python written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the skills of Python users who don’t have a data science background Covers the key foundational concepts you’ll need to know when building deep learning systems Full of step-by-step exercises and activities to help build the skills that you need for the real-world Book Description Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We’ll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It’s okay if these terms seem overwhelming; we’ll show you how to put them to work. We’ll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It’s after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. By guiding you through a trained neural network, we’ll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We’ll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively. What you will learn Discover how you can assemble and clean your very own datasets Develop a tailored machine learning classification strategy Build, train and enhance your own models to solve unique problems Work with production-ready frameworks like Tensorflow and Keras Explain how neural networks operate in clear and simple terms Understand how to deploy your predictions to the web Who this book is for If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.
Catalog
DOWNLOAD
Author : Pikes Peak Community College
language : en
Publisher:
Release Date : 2018
Catalog written by Pikes Peak Community College and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Pacific Rural Press
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1900
Pacific Rural Press written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1900 with Agriculture categories.
Proceedings
DOWNLOAD
Author : American Society for Engineering Education. Conference
language : en
Publisher:
Release Date : 1991
Proceedings written by American Society for Engineering Education. Conference and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Engineering categories.
Computer Control Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1996
Computer Control Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Automatic control categories.
The Tool Manufacturing Engineer
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1968
The Tool Manufacturing Engineer written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1968 with Engineering categories.
Aero Digest
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1942-07
Aero Digest written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1942-07 with Aeronautics categories.