Predictive Modeling And Analytics
DOWNLOAD
Download Predictive Modeling And Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Modeling And Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Predictive Modeling And Analytics
DOWNLOAD
Author : Jeffrey Strickland
language : en
Publisher: Lulu.com
Release Date : 2014-08-06
Predictive Modeling And Analytics written by Jeffrey Strickland and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-06 with Business & Economics categories.
This book is about predictive modeling. Yet, each chapter could easily be handled by an entire volume of its own. So one might think of this as a survey of predictive models, both statistical and machine learning. We define A predictive model as a statistical model or machine learning model used to predict future behavior based on past behavior. In order to use this book, the reader should have a basic understanding of statistics (statistical inference, models, tests, etc.)-this is an advanced book. Every chapter culminates in an example using R. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The book is organized so that statistical models are presented first (hopefully in a logical order), followed by machine learning models, and then applications: uplift modeling and time series. One could use this as a textbook with problem solving in R (there are no "by-hand" exercises).
Predictive Analytics
DOWNLOAD
Author : Vijay Kumar
language : en
Publisher: CRC Press
Release Date : 2021-01-13
Predictive Analytics written by Vijay Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-13 with Mathematics categories.
Predictive analytics refers to making predictions about the future based on different parameters which are historical data, machine learning, and artificial intelligence. This book provides the most recent advances in the field along with case studies and real-world examples. It discusses predictive modeling and analytics in reliability engineering and introduces current achievements and applications of artificial intelligence, data mining, and other techniques in supply chain management. It covers applications to reliability engineering practice, presents numerous examples to illustrate the theoretical results, and considers and analyses case studies and real-word examples. The book is written for researchers and practitioners in the field of system reliability, quality, supply chain management, and logistics management. Students taking courses in these areas will also find this book of interest.
Modeling Techniques In Predictive Analytics
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29
Modeling Techniques In Predictive Analytics written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.
To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Predictive Analytics For Dummies
DOWNLOAD
Author : Anasse Bari
language : en
Publisher: John Wiley & Sons
Release Date : 2016-10-31
Predictive Analytics For Dummies written by Anasse Bari and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-31 with Business & Economics categories.
Use Big Data and technology to uncover real-world insights You don't need a time machine to predict the future. All it takes is a little knowledge and know-how, and Predictive Analytics For Dummies gets you there fast. With the help of this friendly guide, you'll discover the core of predictive analytics and get started putting it to use with readily available tools to collect and analyze data. In no time, you'll learn how to incorporate algorithms through data models, identify similarities and relationships in your data, and predict the future through data classification. Along the way, you'll develop a roadmap by preparing your data, creating goals, processing your data, and building a predictive model that will get you stakeholder buy-in. Big Data has taken the marketplace by storm, and companies are seeking qualified talent to quickly fill positions to analyze the massive amount of data that are being collected each day. If you want to get in on the action and either learn or deepen your understanding of how to use predictive analytics to find real relationships between what you know and what you want to know, everything you need is a page away! Offers common use cases to help you get started Covers details on modeling, k-means clustering, and more Includes information on structuring your data Provides tips on outlining business goals and approaches The future starts today with the help of Predictive Analytics For Dummies.
Modeling Techniques In Predictive Analytics With Python And R
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29
Modeling Techniques In Predictive Analytics With Python And R written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Predictive Analytics
DOWNLOAD
Author : Richard Hurley
language : en
Publisher:
Release Date : 2019-12-30
Predictive Analytics written by Richard Hurley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-30 with categories.
If you want to learn about predictive analytics without having to read a boring textbook, then keep reading... Companies are collecting more data from ever. With the ease of collecting all that data, all the different sources where you can receive the data, and the inexpensive storage, it makes sense to collect as much data as possible. But without a good analysis of that data, and without some time to really figure out what trends and insights are inside all of it, that data becomes worthless. This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future. This guidebook is going to look at predictive analytics, and some of the topics we will explore concerning this topic include: The basics of predictive analysis. How to predict events that are going to happen in the future with big data and data mining. How to predict events that are going to happen in the future with the help of data analysis and statistics. A look at machine learning and how this process can help make predictions. How to avoid prediction traps, avoid bias, and make the best decisions with this analysis. Some of the top reasons to implement this kind of analysis in your business. The steps you can take to create your own predictive analysis model. And much, much more! Working on predictive analytics is going to be one of the best ways that your business can use the data you have to look more deeply inside, and sort through the different predictions you can make. Click the "add to cart" button to start your learning!
Predictive Analytics For Dummies
DOWNLOAD
Author : Anasse Bari
language : en
Publisher: John Wiley & Sons
Release Date : 2014-03-06
Predictive Analytics For Dummies written by Anasse Bari and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-06 with Business & Economics categories.
Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies.
Mastering Predictive Analytics With R
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-18
Mastering Predictive Analytics With R written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Computers categories.
Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily Who This Book Is For Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure. What You Will Learn Master the steps involved in the predictive modeling process Grow your expertise in using R and its diverse range of packages Learn how to classify predictive models and distinguish which models are suitable for a particular problem Understand steps for tidying data and improving the performing metrics Recognize the assumptions, strengths, and weaknesses of a predictive model Understand how and why each predictive model works in R Select appropriate metrics to assess the performance of different types of predictive model Explore word embedding and recurrent neural networks in R Train models in R that can work on very large datasets In Detail R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R. Style and approach This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.
Marketing Data Science
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2015-05-02
Marketing Data Science written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-02 with Business & Economics categories.
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Mastering Predictive Analytics With R
DOWNLOAD
Author : Rui Miguel Forte
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-06-17
Mastering Predictive Analytics With R written by Rui Miguel Forte and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-17 with Computers categories.
R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. This book is designed to be both a guide and a reference for moving beyond the basics of predictive modeling. The book begins with a dedicated chapter on the language of models and the predictive modeling process. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real world data sets. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real world data sets and mastered a diverse range of techniques in predictive analytics.