Practical Machine Learning With R And Python Third Edition
DOWNLOAD
Download Practical Machine Learning With R And Python Third Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Machine Learning With R And Python Third Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Machine Learning With R And Python Third Edition
DOWNLOAD
Author : Tinniam V. Ganesh
language : en
Publisher:
Release Date : 2019
Practical Machine Learning With R And Python Third Edition written by Tinniam V. Ganesh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
This is the 3rd edition of the book. All the code sections are formatted with fixed-width font Consolas for better readability. This book implements many common Machine Learning algorithms in equivalent R and Python. The book touches on R and Python implementations of different regression models, classification algorithms including logistic regression, KNN classification, SVMs, b-splines, random forest, boosting etc. Other techniques like best-fit, forward fit, backward fit, and lasso and ridge regression are also covered. The book further touches on classification metrics for computing accuracy, recall, precision etc. There are implementations of validation, ROC and AUC curves in both R and Python. Finally, the book covers unsupervised learning methods like K-Means, PCA and Hierarchical clustering.The book is well suited for the novice and the expert. The first two chapters discuss the most important programming constructs in R and Python. The third chapter highlights equivalent programming phrases in R and Python. Hence, those with no knowledge of R and Python will find these introductory chapters useful. Those who are proficient in one of the language can further their knowledge on the other. Those are familiar with both R and Python will find the equivalent implementations useful to internalize the algorithms. This book should serve as a useful and handy reference for Machine Learning algorithms in both R and Python
Practical Machine Learning With R And Python Second Edition
DOWNLOAD
Author : Tinniam V. Ganesh
language : en
Publisher:
Release Date : 2018-05-30
Practical Machine Learning With R And Python Second Edition written by Tinniam V. Ganesh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-30 with categories.
This is the 2nd edition of the book. This 2nd edition includes more content, detailed code comments and better formatting for readbility. This book implements many common Machine Learning algorithms in equivalent R and Python. The book touches on R and Python implementations of different regression models, classification algorithms including logistic regression, KNN classification, SVMs, b-splines, random forest, boosting etc. Other techniques like best-fit, forward fit, backward fit, and lasso and ridge regression are also covered. The book further touches on classification metrics for computing accuracy, recall, precision etc. There are implementations of validation, ROC and AUC curves in both R and Python. Finally, the book covers unsupervised learning methods like K-Means, PCA and Hierarchical clustering.The book is well suited for the novice and the expert. The first two chapters discuss the most important programming constructs in R and Python. The third chapter highlights equivalent programming phrases in R and Python. Hence, those with no knowledge of R and Python will find these introductory chapters useful. Those who are proficient in one of the language can further their knowledge on the other. Those are familiar with both R and Python will find the equivalent implementations useful to internalize the algorithms. This book should serve as a useful and handy reference for Machine Learning algorithms in both R and Python
Python Machine Learning By Example
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-10-30
Python Machine Learning By Example written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-30 with Computers categories.
A comprehensive guide to get you up to speed with the latest developments of practical machine learning with Python and upgrade your understanding of machine learning (ML) algorithms and techniques Key FeaturesDive into machine learning algorithms to solve the complex challenges faced by data scientists todayExplore cutting edge content reflecting deep learning and reinforcement learning developmentsUse updated Python libraries such as TensorFlow, PyTorch, and scikit-learn to track machine learning projects end-to-endBook Description Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems. What you will learnUnderstand the important concepts in ML and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text analysis and NLP using Python libraries such NLTK and GensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow 2, PyTorch, and scikit-learnWho this book is for If you’re a machine learning enthusiast, data analyst, or data engineer highly passionate about machine learning and want to begin working on machine learning assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial, although this is not necessary.
Practical Machine Learning With R And Python
DOWNLOAD
Author : Tinniam V. Ganesh
language : en
Publisher:
Release Date : 2017-12-02
Practical Machine Learning With R And Python written by Tinniam V. Ganesh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-02 with categories.
This book implements many common Machine Learning algorithms in equivalent R and Python. The book touches on R and Python implementations of different regression models, classification algorithms including logistic regression, KNN classification, SVMs, b-splines, random forest, boosting etc. Other techniques like best-fit, forward fit, backward fit, and lasso and ridge regression are also covered. The book further touches on classification metrics for computing accuracy, recall, precision etc. There are implementations of validation, ROC and AUC curves in both R and Python. Finally, the book covers unsupervised learning methods like K-Means, PCA and Hierarchical clustering.The book is well suited for the novice and the expert. The first two chapters discuss the most important programming constructs in R and Python. The third chapter highlights equivalent programming phrases in R and Python. Hence, those with no knowledge of R and Python will find these introductory chapters useful. Those who are proficient in one of the language can further their knowledge on the other. Those are familiar with both R and Python will find the equivalent implementations useful to internalize the algorithms. This book should serve as a useful and handy reference for Machine Learning algorithms in both R and Python
Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-05
Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Practical Machine Learning With R
DOWNLOAD
Author : Brindha Priyadarshini Jeyaraman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-30
Practical Machine Learning With R written by Brindha Priyadarshini Jeyaraman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-30 with Computers categories.
Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key FeaturesGain a comprehensive overview of different machine learning techniquesExplore various methods for selecting a particular algorithmImplement a machine learning project from problem definition through to the final modelBook Description With huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learnDefine a problem that can be solved by training a machine learning modelObtain, verify and clean data before transforming it into the correct format for usePerform exploratory analysis and extract features from dataBuild models for neural net, linear and non-linear regression, classification, and clusteringEvaluate the performance of a model with the right metricsImplement a classification problem using the neural net packageEmploy a decision tree using the random forest libraryWho this book is for If you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.
Python Real World Machine Learning
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-11-14
Python Real World Machine Learning written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-14 with Computers categories.
Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!
Building Machine Learning Systems With Python
DOWNLOAD
Author : Luis Pedro Coelho
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-31
Building Machine Learning Systems With Python written by Luis Pedro Coelho and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.
Get more from your data by creating practical machine learning systems with Python Key Features Develop your own Python-based machine learning system Discover how Python offers multiple algorithms for modern machine learning systems Explore key Python machine learning libraries to implement in your projects Book Description Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems. Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you’ll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems. By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks. What you will learn Build a classification system that can be applied to text, images, and sound Employ Amazon Web Services (AWS) to run analysis on the cloud Solve problems related to regression using scikit-learn and TensorFlow Recommend products to users based on their past purchases Understand different ways to apply deep neural networks on structured data Address recent developments in the field of computer vision and reinforcement learning Who this book is for Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.
Practical Machine Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2017-12-20
Practical Machine Learning With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Mastering Machine Learning With R
DOWNLOAD
Author : Cory Leismester
language : en
Publisher: Packt Publishing
Release Date : 2015-10-28
Mastering Machine Learning With R written by Cory Leismester and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.
Master machine learning techniques with R to deliver insights for complex projectsAbout This Book• Get to grips with the application of Machine Learning methods using an extensive set of R packages• Understand the benefits and potential pitfalls of using machine learning methods• Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML systemWho This Book Is ForIf you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful.What You Will Learn• Gain deep insights to learn the applications of machine learning tools to the industry• Manipulate data in R efficiently to prepare it for analysis• Master the skill of recognizing techniques for effective visualization of data• Understand why and how to create test and training data sets for analysis• Familiarize yourself with fundamental learning methods such as linear and logistic regression• Comprehend advanced learning methods such as support vector machines• Realize why and how to apply unsupervised learning methodsIn DetailMachine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data.The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series.The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.Style and approachThis is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints.