Practical Machine Learning With Python
DOWNLOAD
Download Practical Machine Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Machine Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Machine Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2017-12-20
Practical Machine Learning With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-05
Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Machine Learning With Python
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-03-06
Machine Learning With Python written by Oliver Theobald and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-06 with Computers categories.
Unlock the secrets of data science and machine learning with our comprehensive Python course, designed to take you from basics to complex algorithms effortlessly Key Features Navigate through Python's machine learning libraries effectively Learn exploratory data analysis and data scrubbing techniques Design and evaluate machine learning models with precision Book DescriptionThe course starts by setting the foundation with an introduction to machine learning, Python, and essential libraries, ensuring you grasp the basics before diving deeper. It then progresses through exploratory data analysis, data scrubbing, and pre-model algorithms, equipping you with the skills to understand and prepare your data for modeling. The journey continues with detailed walkthroughs on creating, evaluating, and optimizing machine learning models, covering key algorithms such as linear and logistic regression, support vector machines, k-nearest neighbors, and tree-based methods. Each section is designed to build upon the previous, reinforcing learning and application of concepts. Wrapping up, the course introduces the next steps, including an introduction to Python for newcomers, ensuring a comprehensive understanding of machine learning applications.What you will learn Analyze datasets for insights Scrub data for model readiness Understand key ML algorithms Design and validate models Apply Linear and Logistic Regression Utilize K-Nearest Neighbors and SVMs Who this book is for This course is ideal for aspiring data scientists and professionals looking to integrate machine learning into their workflows. A basic understanding of Python and statistics is beneficial.
Python Ai Programming
DOWNLOAD
Author : Patrick J
language : en
Publisher: GitforGits
Release Date : 2024-01-03
Python Ai Programming written by Patrick J and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-03 with Computers categories.
This book aspires young graduates and programmers to become AI engineers and enter the world of artificial intelligence by combining powerful Python programming with artificial intelligence. Beginning with the fundamentals of Python programming, the book gradually progresses to machine learning, where readers learn to implement Python in developing predictive models. The book provides a clear and accessible explanation of machine learning, incorporating practical examples and exercises that strengthen understanding. We go deep into deep learning, another vital component of AI. Readers gain a thorough understanding of how Python's frameworks and libraries can be used to create sophisticated neural networks and algorithms, which are required for tasks such as image and speech recognition. Natural Language Processing is also covered in the book, with fundamental concepts and techniques for interpreting and generating human-like language covered. The book's focus on computer vision and reinforcement learning is distinctive, presenting these cutting-edge AI fields in an approachable manner. Readers will learn how to use Python's intuitive programming paradigm to create systems that interpret visual data and make intelligent decisions based on environmental interactions. The book focuses on ethical AI development and responsible programming, emphasizing the importance of developing AI that is fair, transparent, and accountable. Each chapter is designed to improve learning by including practical examples, case studies, and exercises that provide hands-on experience. This book is an excellent starting point for anyone interested in becoming an AI engineer, providing the necessary foundational knowledge and skills to delve into the fascinating world of artificial intelligence. Key Learnings Explore Python basics and AI integration for real-world application and career advancement. Experience the power of Python in AI with practical machine learning techniques. Practice Python's deep learning tools for innovative AI solution development. Dive into NLP with Python to revolutionize data interpretation and communication strategies. Simple yet practical understanding of reinforcement learning for strategic AI decision making. Uncover ethical AI development and frameworks, and concepts of responsible and trustworthy AI. Harness Python's capabilities for creating AI applications with a focus on fairness and bias. Table of Content Introduction to Artificial Intelligence Python for AI Data as Fuel for AI Machine Learning Foundation Essentials of Deep Learning NLP and Computer Vision Hands-on Reinforcement Learning Ethics to AI
Practical Machine Learning
DOWNLOAD
Author : Sunila Gollapudi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-01-30
Practical Machine Learning written by Sunila Gollapudi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-30 with Computers categories.
Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.
Practical Deep Learning
DOWNLOAD
Author : Ronald T. Kneusel
language : en
Publisher: No Starch Press
Release Date : 2021-02-23
Practical Deep Learning written by Ronald T. Kneusel and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-23 with Computers categories.
Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about artificial intelligence and machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.
Practical Machine Learning With R And Python Second Edition
DOWNLOAD
Author : Tinniam V. Ganesh
language : en
Publisher:
Release Date : 2018-05-30
Practical Machine Learning With R And Python Second Edition written by Tinniam V. Ganesh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-30 with categories.
This is the 2nd edition of the book. This 2nd edition includes more content, detailed code comments and better formatting for readbility. This book implements many common Machine Learning algorithms in equivalent R and Python. The book touches on R and Python implementations of different regression models, classification algorithms including logistic regression, KNN classification, SVMs, b-splines, random forest, boosting etc. Other techniques like best-fit, forward fit, backward fit, and lasso and ridge regression are also covered. The book further touches on classification metrics for computing accuracy, recall, precision etc. There are implementations of validation, ROC and AUC curves in both R and Python. Finally, the book covers unsupervised learning methods like K-Means, PCA and Hierarchical clustering.The book is well suited for the novice and the expert. The first two chapters discuss the most important programming constructs in R and Python. The third chapter highlights equivalent programming phrases in R and Python. Hence, those with no knowledge of R and Python will find these introductory chapters useful. Those who are proficient in one of the language can further their knowledge on the other. Those are familiar with both R and Python will find the equivalent implementations useful to internalize the algorithms. This book should serve as a useful and handy reference for Machine Learning algorithms in both R and Python
Python Machine Learning In 7 Days
DOWNLOAD
Author : Arish Ali
language : en
Publisher:
Release Date : 2018
Python Machine Learning In 7 Days written by Arish Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
"Machine learning is one of the most sought-after skills in the market. But have you ever wondered where to start or found the course not so easy to follow. With this hands-on and practical machine learning course, you can learn and start applying machine learning in less than a week without having to be an expert mathematician. In this course, you will be introduced to a new machine learning aspect in each section followed by a practical assignment as a homework to help you in efficiently implement the learnings in a practical manner. With the systematic and fast-paced approach to this course, learn machine learning using Python in the most practical and structured way to develop machine learning projects in Python in a week. This course is structured to unlock the potential of Python machine learning in the shortest amount of time. If you are looking to upgrade your machine learning skills using Python in the quickest possible time, then this course is for you!"--Resource description page.
Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12
Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.
Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.
Practical Machine Learning With Python And Scikit Learn
DOWNLOAD
Author : Thompson Carter
language : en
Publisher: Independently Published
Release Date : 2024-10-13
Practical Machine Learning With Python And Scikit Learn written by Thompson Carter and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-13 with Computers categories.
Practical Machine Learning with Python and Scikit-Learn: A Step-by-Step Guide to Building Intelligent Models with the Power of Python Unlock the full potential of machine learning with Python and Scikit-Learn, the most versatile library for developers and data scientists alike. Whether you're a beginner looking to get started with machine learning or an experienced coder seeking to expand your toolkit, Practical Machine Learning with Python and Scikit-Learn delivers everything you need to build high-impact, intelligent models that perform. From mastering the essential libraries like Pandas, Numpy, and Matplotlib, to tackling advanced concepts like hyperparameter tuning, neural networks, and unsupervised learning, this guide offers clear, step-by-step explanations paired with practical coding examples. You'll discover how to handle real-world data, train your models, and make predictions with confidence-whether it's for predicting stock prices, optimizing workflows, or classifying customer behavior. Inside, you'll learn how to: Navigate Python's most powerful libraries for machine learning. Build, evaluate, and tune machine learning models for optimal performance. Use Scikit-Learn for supervised and unsupervised learning tasks. Apply deep learning techniques and integrate TensorFlow for complex projects. Solve common machine learning challenges like overfitting, feature selection, and handling imbalanced data. Written with clarity and precision, Practical Machine Learning with Python and Scikit-Learn is your go-to resource for transforming raw data into actionable insights, empowering your projects, and driving innovation. Whether you're looking to boost your career or apply machine learning to real-world problems, this book will get you there.