Machine Learning From Scratch
DOWNLOAD
Download Machine Learning From Scratch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning From Scratch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning From Scratch
DOWNLOAD
Author : Seth Weidman
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-09
Deep Learning From Scratch written by Seth Weidman and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework
Python Machine Learning From Scratch
DOWNLOAD
Author : Daniel Nedal
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-07-24
Python Machine Learning From Scratch written by Daniel Nedal and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with categories.
***BUY NOW (Will soon return to 20.59) ******Free eBook for customers who purchase the print book from Amazon*** Are you thinking of learning more about Machine Learning using Python? This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning. Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a Machine Learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected]. If you need to see the quality of our job, AI Sciences Company offering you a free eBook in Machine Learning with Python written by the data scientist Alain Kaufmann at http: //aisciences.net/free-books/
Python Machine Learning From Scratch
DOWNLOAD
Author : Sebastian Dark
language : en
Publisher:
Release Date : 2018-11-09
Python Machine Learning From Scratch written by Sebastian Dark and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-09 with Machine learning categories.
In this book, you will find the perfect balance between the information being very thorough and being able to understand it. Although tailored for beginners, it won't contain simple and easily accessible information.
Reinforcement Learning From Scratch
DOWNLOAD
Author : Uwe Lorenz
language : en
Publisher: Springer Nature
Release Date : 2022-10-27
Reinforcement Learning From Scratch written by Uwe Lorenz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-27 with Computers categories.
In ancient games such as chess or go, the most brilliant players can improve by studying the strategies produced by a machine. Robotic systems practice their own movements. In arcade games, agents capable of learning reach superhuman levels within a few hours. How do these spectacular reinforcement learning algorithms work? With easy-to-understand explanations and clear examples in Java and Greenfoot, you can acquire the principles of reinforcement learning and apply them in your own intelligent agents. Greenfoot (M.Kölling, King's College London) and the hamster model (D. Bohles, University of Oldenburg) are simple but also powerful didactic tools that were developed to convey basic programming concepts. The result is an accessible introduction into machine learning that concentrates on reinforcement learning. Taking the reader through the steps of developing intelligent agents, from the very basics to advanced aspects, touching on a variety of machine learning algorithms along the way, one is allowed to play along, experiment, and add their own ideas and experiments.
Python Machine Learning From Scratch
DOWNLOAD
Author : Jonathan Adam
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-08-24
Python Machine Learning From Scratch written by Jonathan Adam and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-24 with categories.
***** BUY NOW (will soon return to 25.89 $)******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of learning more about Machine Learning using Python? (For Beginners) This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning.Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK.Q: Does this book include everything I need to become a Machine Learning expert?A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected] Sciences Company offers you a free eBooks at http://aisciences.net/free/
Machine Learning From Scratch
DOWNLOAD
Author : Alain Kaufmann
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-03-06
Machine Learning From Scratch written by Alain Kaufmann and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-06 with categories.
***** Buy now (Will soon return to $38.95 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Machine Learning From Scratch by using Python? The overall aim of this book is to give you an application of machine learning techniques with python. Machine learning is a field of Artificial Intelligence that uses algorithms to learn from data and make predictions. This means that we can feed data into an algorithm, and use it to make predictions about what might happen in the future. This book is a practical guide through the basic principles of machine learning, and how to get started with machine learning using Python based on libraries that make machine learning easy to get started with. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images, which detail all-important Machine learning concepts and their applications. This Is a Practical Guide Book This book will help you explore exactly the most important machine learning techniques by using python and real data. It is a step-by-step book. You will build our Machine Learning Models by using Python Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and machine learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Great Book? Introduction Using Python for Machine Learning Steps to Solving Machine Learning Problems A Machine Learning Example: Predicting Housing Prices Here's Where Real Machine Learning Starts What If Regression Doesn't Apply? How to Improve Your Model's Performance How to Improve Your Model's Performance Neural Networks & Deep Learning The Future of Machine Learning Glossary on Important Machine Learning Terms Sources & References Bonus Chapter: Anaconda Setup & Python Crash Course Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: f you want to smash Data Science from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and further learning will be required beyond this book to master all aspects of data science. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. will also be happy to help you if you send us an email at [email protected].
Artificial Intelligence By Example
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31
Artificial Intelligence By Example written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.
Be an adaptive thinker that leads the way to Artificial Intelligence Key Features AI-based examples to guide you in designing and implementing machine intelligence Develop your own method for future AI solutions Acquire advanced AI, machine learning, and deep learning design skills Book Description Artificial Intelligence has the potential to replicate humans in every field. This book serves as a starting point for you to understand how AI is built, with the help of intriguing examples and case studies. Artificial Intelligence By Example will make you an adaptive thinker and help you apply concepts to real-life scenarios. Using some of the most interesting AI examples, right from a simple chess engine to a cognitive chatbot, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and IoT, and develop emotional quotient in chatbots using neural networks. You will move on to designing AI solutions in a simple manner rather than get confused by complex architectures and techniques. This comprehensive guide will be a starter kit for you to develop AI applications on your own. By the end of this book, will have understood the fundamentals of AI and worked through a number of case studies that will help you develop business vision. What you will learn Use adaptive thinking to solve real-life AI case studies Rise beyond being a modern-day factory code worker Acquire advanced AI, machine learning, and deep learning designing skills Learn about cognitive NLP chatbots, quantum computing, and IoT and blockchain technology Understand future AI solutions and adapt quickly to them Develop out-of-the-box thinking to face any challenge the market presents Who this book is for Artificial Intelligence by Example is a simple, explanatory, and descriptive guide for junior developers, experienced developers, technology consultants, and those interested in AI who want to understand the fundamentals of Artificial Intelligence and implement it practically by devising smart solutions. Prior experience with Python and statistical knowledge is essential to make the most out of this book.
Machine Learning Algorithms From Scratch
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher:
Release Date : 2017
Machine Learning Algorithms From Scratch written by Jason Brownlee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Algorithms categories.
Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.
Machine Learning Python For Absolute Beginners
DOWNLOAD
Author : Oliver Theobald
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-08-20
Machine Learning Python For Absolute Beginners written by Oliver Theobald and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-20 with Computers categories.
A clear and beginner-focused guide to Python and ML fundamentals. Covers coding basics, OOP, and core machine learning methods in a friendly, structured format. Key Features A two-part structure combining Python basics and machine learning for seamless skill-building Logical progression designed to reduce learning friction and build strong conceptual clarity Hands-on practice with Jupyter notebooks and real datasets to reinforce every key concept taught Book DescriptionStarting with Python syntax and data types, this guide builds toward implementing key machine learning models. Learn about loops, functions, OOP, and data cleaning, then transition into algorithms like regression, KNN, and neural networks. A final section walks you through model optimization and building projects in Python. The book is split into two major sections—foundational Python programming and introductory machine learning. Readers are guided through essential concepts such as data types, variables, control flow, object-oriented programming, and using libraries like pandas for data manipulation. In the machine learning section, topics like model selection, supervised vs unsupervised learning, bias-variance, and common algorithms are demystified with practical coding examples. It’s a structured, clear roadmap to mastering both programming and applied ML from zero knowledge.What you will learn Master Python syntax, variables, and basic data structures Build control flows using conditionals, loops, and functions Implement object-oriented concepts like classes and objects Analyze and clean datasets using pandas and Python tools Train supervised and unsupervised machine learning models Evaluate and optimize models for better prediction accuracy Who this book is for This book is perfect for beginners with little to no coding or data science background. It assumes no prior experience with Python or machine learning. Ideal for aspiring data analysts, tech learners, and students transitioning into AI and programming roles.
Machine Learning For Beginners
DOWNLOAD
Author : Chris Sebastian
language : en
Publisher: Python, Machine Learning
Release Date : 2019
Machine Learning For Beginners written by Chris Sebastian and has been published by Python, Machine Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Computers categories.
♦♦Bonus: Buy the Paperback version of this book, and get the kindle eBook version included for FREE** Machine Learning is changing the world. You use Machine Learning every day and probably don't know it. In this book, you will learn how ML grew from a desire to make computers able to learn. Trace the development of Machine Learning from the early days of a computer learning how to play checkers, to machines able to beat world masters in chess and go. Understand how large data is so important to Machine Learning, and how the collection of massive amounts of data provides Machine Learning programmers with the information they need to developing learning algorithms.Simple examples will help you understand the complex math and probability statistics underlining Machine Learning. You will also see real-world examples of Machine Learning in action and uncover how these algorithms are making your life better every day.Learn about how artificial intelligence, Machine Learning, Neural Networks, and Swarm Intelligence interact and complement each other as part of the quest to generate machines capable of thinking and reacting to the world. Read about the technical issues with Machine Learning and how they are being overcome. Discover the dark side of ML and what possible outcomes there could be should things go wrong. And finally, learn about the positive future artificial intelligence and Machine Learning promise to bring to the world. In this book, you will discover *The history of Machine Learning *Approaches taken to ML in the past and present *Artificial intelligence and its relationship to ML *How neural networks, big data, regression, and the cloud all play a part in the development of Machine Learning *Compare Machine Learning to the Internet of Things, Robotics, and Swarm Intelligence *Learn about the different models of ML and how each is used to produce learning algorithms *Get access to free software and data sets so you can try out your very own Machine Learning software *Examine some of the technical problems and philosophical dilemmas with ML *See what advanced Machine Learning will make to our world in the future So what are you waiting for???Scroll back up and order this book NOW.