Download Machine Learning For Engineers - eBooks (PDF)

Machine Learning For Engineers


Machine Learning For Engineers
DOWNLOAD

Download Machine Learning For Engineers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Engineers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning Engineering With Python


Machine Learning Engineering With Python
DOWNLOAD
Author : Andrew P. McMahon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-05

Machine Learning Engineering With Python written by Andrew P. McMahon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-05 with Computers categories.


Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.



A Brief Introduction To Machine Learning For Engineers


A Brief Introduction To Machine Learning For Engineers
DOWNLOAD
Author : Osvaldo Simeone
language : en
Publisher:
Release Date : 2018-08-14

A Brief Introduction To Machine Learning For Engineers written by Osvaldo Simeone and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-14 with Technology & Engineering categories.


There is a wealth of literature and books available to engineers starting to understand what machine learning is and how it can be used in their everyday work. This presents the problem of where the engineer should start. The answer is often "for a general, but slightly outdated introduction, read this book; for a detailed survey of methods based on probabilistic models, check this reference; to learn about statistical learning, this text is useful" and so on. This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment, encompassing recent developments and pointers to the literature for further study. A Brief Introduction to Machine Learning for Engineers is the entry point to machine learning for students, practitioners, and researchers with an engineering background in probability and linear algebra.



A Greater Foundation For Machine Learning Engineering


A Greater Foundation For Machine Learning Engineering
DOWNLOAD
Author : Dr Ganapathi Pulipaka
language : en
Publisher: Xlibris Us
Release Date : 2021-10

A Greater Foundation For Machine Learning Engineering written by Dr Ganapathi Pulipaka and has been published by Xlibris Us this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10 with categories.


The book provides foundations of machine learning and algorithms with a road map to deep learning, genesis of machine learning, installation of Python, supervised machine learning algorithms and implementations in Python or R, unsupervised machine learning algorithms in Python or R including natural language processing techniques and algorithms, Bayesian statistics, origins of deep learning, neural networks, and all the deep learning algorithms with some implementations in TensorFlow and architectures, installation of TensorFlow, neural net implementations in TensorFlow, Amazon ecosystem for machine learning, swarm intelligence, machine learning algorithms, in-memory computing, genetic algorithms, real-world research projects with supercomputers, deep learning frameworks with Intel deep learning platform, Nvidia deep learning frameworks, IBM PowerAI deep learning frameworks, H2O AI deep learning framework, HPC with deep learning frameworks, GPUs and CPUs, memory architectures, history of supercomputing, infrastructure for supercomputing, installation of Hadoop on Linux operating system, design considerations, e-Therapeutics's big data project, infrastructure for in-memory data fabric Hadoop, healthcare and best practices for data strategies, R, architectures, NoSQL databases, HPC with parallel computing, MPI for data science and HPC, and JupyterLab for HPC.



Machine Learning


Machine Learning
DOWNLOAD
Author : Andreas Lindholm
language : en
Publisher:
Release Date : 2022

Machine Learning written by Andreas Lindholm and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Machine learning categories.


"This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning"--



Machine Learning For Engineers


Machine Learning For Engineers
DOWNLOAD
Author : Osvaldo Simeone
language : en
Publisher: Cambridge University Press
Release Date : 2022-11-03

Machine Learning For Engineers written by Osvaldo Simeone and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-03 with Technology & Engineering categories.


This self-contained introduction to machine learning, designed from the start with engineers in mind, will equip students with everything they need to start applying machine learning principles and algorithms to real-world engineering problems. With a consistent emphasis on the connections between estimation, detection, information theory, and optimization, it includes: an accessible overview of the relationships between machine learning and signal processing, providing a solid foundation for further study; clear explanations of the differences between state-of-the-art techniques and more classical methods, equipping students with all the understanding they need to make informed technique choices; demonstration of the links between information-theoretical concepts and their practical engineering relevance; reproducible examples using Matlab, enabling hands-on student experimentation. Assuming only a basic understanding of probability and linear algebra, and accompanied by lecture slides and solutions for instructors, this is the ideal introduction to machine learning for engineering students of all disciplines.



Advanced Deep Learning For Engineers And Scientists


Advanced Deep Learning For Engineers And Scientists
DOWNLOAD
Author : Kolla Bhanu Prakash
language : en
Publisher: Springer Nature
Release Date : 2021-07-24

Advanced Deep Learning For Engineers And Scientists written by Kolla Bhanu Prakash and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-24 with Technology & Engineering categories.


This book provides a complete illustration of deep learning concepts with case-studies and practical examples useful for real time applications. This book introduces a broad range of topics in deep learning. The authors start with the fundamentals, architectures, tools needed for effective implementation for scientists. They then present technical exposure towards deep learning using Keras, Tensorflow, Pytorch and Python. They proceed with advanced concepts with hands-on sessions for deep learning. Engineers, scientists, researches looking for a practical approach to deep learning will enjoy this book. Presents practical basics to advanced concepts in deep learning and how to apply them through various projects; Discusses topics such as deep learning in smart grids and renewable energy & sustainable development; Explains how to implement advanced techniques in deep learning using Pytorch, Keras, Python programming.



Machine Learning Engineering


Machine Learning Engineering
DOWNLOAD
Author : Andriy Burkov
language : en
Publisher: True Positive Incorporated
Release Date : 2020-09-08

Machine Learning Engineering written by Andriy Burkov and has been published by True Positive Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-08 with categories.


From the author of a world bestseller published in eleven languages, The Hundred-Page Machine Learning Book, this new book by Andriy Burkov is the most complete applied AI book out there. It is filled with best practices and design patterns of building reliable machine learning solutions that scale. Andriy Burkov has a Ph.D. in AI and is the leader of a machine learning team at Gartner. This book is based on Andriy's own 15 years of experience in solving problems with AI as well as on the published experience of the industry leaders. "If you intend to use machine learning to solve business problems at scale, I'm delighted you got your hands on this book." -Cassie Kozyrkov, Chief Decision Scientist at Google "Foundational work about the reality of building machine learning models in production." -Karolis Urbonas, Head of Machine Learning and Science at Amazon



Machine Learning Engineering With Python Second Edition


Machine Learning Engineering With Python Second Edition
DOWNLOAD
Author : Andrew McMahon
language : en
Publisher:
Release Date : 2023-06

Machine Learning Engineering With Python Second Edition written by Andrew McMahon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06 with categories.


This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems.



Machine Learning For Engineers


Machine Learning For Engineers
DOWNLOAD
Author : Ryan G. McClarren
language : en
Publisher: Springer
Release Date : 2022-09-23

Machine Learning For Engineers written by Ryan G. McClarren and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-23 with Technology & Engineering categories.


All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.



Building Intelligent Systems


Building Intelligent Systems
DOWNLOAD
Author : Geoff Hulten
language : en
Publisher: Apress
Release Date : 2018-03-06

Building Intelligent Systems written by Geoff Hulten and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-06 with Computers categories.


Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems