Machine Learning Engineering With Python Second Edition
DOWNLOAD
Download Machine Learning Engineering With Python Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Engineering With Python Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning Engineering With Python
DOWNLOAD
Author : Andrew P. McMahon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-05
Machine Learning Engineering With Python written by Andrew P. McMahon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-05 with Computers categories.
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.
Machine Learning Engineering With Python
DOWNLOAD
Author : Andrew P. McMahon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-08-31
Machine Learning Engineering With Python written by Andrew P. McMahon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-31 with Computers categories.
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain Key Features This second edition delves deeper into key machine learning topics, CI/CD, and system design Explore core MLOps practices, such as model management and performance monitoring Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools Book DescriptionThe Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.What you will learn Plan and manage end-to-end ML development projects Explore deep learning, LLMs, and LLMOps to leverage generative AI Use Python to package your ML tools and scale up your solutions Get to grips with Apache Spark, Kubernetes, and Ray Build and run ML pipelines with Apache Airflow, ZenML, and Kubeflow Detect drift and build retraining mechanisms into your solutions Improve error handling with control flows and vulnerability scanning Host and build ML microservices and batch processes running on AWS Who this book is for This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
Natural Language Processing In Action Second Edition
DOWNLOAD
Author : Hobson Lane
language : en
Publisher: Simon and Schuster
Release Date : 2025-02-25
Natural Language Processing In Action Second Edition written by Hobson Lane and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-25 with Computers categories.
Develop your NLP skills from scratch, with an open source toolbox of Python packages, Transformers, Hugging Face, vector databases, and your own Large Language Models. Natural Language Processing in Action, Second Edition has helped thousands of data scientists build machines that understand human language. In this new and revised edition, you’ll discover state-of-the art Natural Language Processing (NLP) models like BERT and HuggingFace transformers, popular open-source frameworks for chatbots, and more. You’ll create NLP tools that can detect fake news, filter spam, deliver exceptional search results and even build truthfulness and reasoning into Large Language Models (LLMs). In Natural Language Processing in Action, Second Edition you will learn how to: • Process, analyze, understand, and generate natural language text • Build production-quality NLP pipelines with spaCy • Build neural networks for NLP using Pytorch • BERT and GPT transformers for English composition, writing code, and even organizing your thoughts • Create chatbots and other conversational AI agents In this new and revised edition, you’ll discover state-of-the art NLP models like BERT and HuggingFace transformers, popular open-source frameworks for chatbots, and more. Plus, you’ll discover vital skills and techniques for optimizing LLMs including conversational design, and automating the “trial and error” of LLM interactions for effective and accurate results. About the technology From nearly human chatbots to ultra-personalized business reports to AI-generated email, news stories, and novels, natural language processing (NLP) has never been more powerful! Groundbreaking advances in deep learning have made high-quality open source models and powerful NLP tools like spaCy and PyTorch widely available and ready for production applications. This book is your entrance ticket—and backstage pass—into the next generation of natural language processing. About the book Natural Language Processing in Action, Second Edition introduces the foundational technologies and state-of-the-art tools you’ll need to write and publish NLP applications. You learn how to create custom models for search, translation, writing assistants, and more, without relying on big commercial foundation models. This fully updated second edition includes coverage of BERT, Hugging Face transformers, fine-tuning large language models, and more. What's inside • NLP pipelines with spaCy • Neural networks with PyTorch • BERT and GPT transformers • Conversational design for chatbots About the reader For intermediate Python programmers familiar with deep learning basics. About the author Hobson Lane is a data scientist and machine learning engineer with over twenty years of experience building autonomous systems and NLP pipelines. Maria Dyshel is a social entrepreneur and artificial intelligence expert, and the CEO and cofounder of Tangible AI. Cole Howard and Hannes Max Hapke were co-authors of the first edition.
Introduction To Generative Ai Second Edition
DOWNLOAD
Author : Numa Dhamani
language : en
Publisher: Simon and Schuster
Release Date : 2026-01-13
Introduction To Generative Ai Second Edition written by Numa Dhamani and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2026-01-13 with Computers categories.
Get up to speed quickly with generative AI! AI tools like ChatGPT and Gemini, automated coding tools like Cursor and Copilot, and countless LLM-powered agents have become a part of daily life. They’ve also spawned a storm of misinformation, hype, and doomsaying that makes it tough to understand exactly what Generative AI actually is and what it can really do. Introduction to Generative AI, Second Edition delivers a clearly-written survey of generative AI fundamentals along with the techniques and strategies you need to use AI safely and effectively. In this easy-to-read introduction, you’ll learn: • How large language models (LLMs) work • How to apply AI across personal and professional work • The social, legal, and policy landscape around generative AI • Emerging trends like reasoning models and vibe coding Introduction to Generative AI, Second Edition guides you from your first eye-opening interaction with tools like ChatGPT to how AI tools can transform your personal and professional life safely and responsibly. This second edition has been completely revised to reflect the latest developments in the field—from the latest innovations in prompt engineering and AI agents to fresh coverage of multimodal training, reasoning models, no-code tools, retrieval-augmented generation (RAG), and more. About the book Introduction to Generative AI, Second Edition is an up-to-date guide to the capabilities, risks, and limitations of tools like ChatGPT, Gemini, and Claude. This easy-to-follow guide moves quickly through the basics, giving you the skills and understanding to use AI with confidence. Along the way, you’ll explore how AI is impacting even established industries, with an expert-level look at global investment in AI, AI education policy, AI’s economic impact, and the ongoing legal and ethical issues of AI usage. About the reader For anyone interested in generative AI. No technical experience required. About the author Numa Dhamani is a natural language processing expert working at the intersection of technology and society. Maggie Engler is an engineer and researcher currently working on safety for large language models.
Artificial Intelligence With Python Second Edition
DOWNLOAD
Author : Alberto Artasanchez
language : en
Publisher:
Release Date : 2020
Artificial Intelligence With Python Second Edition written by Alberto Artasanchez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x and TensorFlow 2, with seven new chapters that cover RNNs, AI & Big Data, fundamental use cases, chatbots, and more. Key Features Completely updated and revised to Python 3.x and TensorFlow 2 New chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineering Learn more about deep learning algorithms, machine learning data pipelines, and chatbots Book Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x and TensorFlow 2. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learn Understand what artificial intelligence, machine learning, and data science are Explore the most common artificial intelligence use cases Learn how to build a machine learning pipeline Assimilate the basics of feature selection and feature engineering Identify the differences between supervised and unsupervised learning Discover the most recent advances and tools offered for AI development in the cloud Develop automatic speech recognition systems and chatbots Apply AI algorithms to time series data Who this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Python Machine Learning By Example
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-28
Python Machine Learning By Example written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-28 with Mathematics categories.
Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learn Key FeaturesExploit the power of Python to explore the world of data mining and data analyticsDiscover machine learning algorithms to solve complex challenges faced by data scientists todayUse Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projectsBook Description The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities. What you will learnUnderstand the important concepts in machine learning and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text and NLP using Python libraries such NLTK and gensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow, and scikit-learnWho this book is for If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.
Python Deep Learning
DOWNLOAD
Author : Ivan Vasilev
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-16
Python Deep Learning written by Ivan Vasilev and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-16 with Computers categories.
Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries Key Features Build a strong foundation in neural networks and deep learning with Python libraries Explore advanced deep learning techniques and their applications across computer vision and NLP Learn how a computer can navigate in complex environments with reinforcement learning Book DescriptionWith the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.What you will learn Grasp the mathematical theory behind neural networks and deep learning processes Investigate and resolve computer vision challenges using convolutional networks and capsule networks Solve generative tasks using variational autoencoders and Generative Adversarial Networks Implement complex NLP tasks using recurrent networks (LSTM and GRU) and attention models Explore reinforcement learning and understand how agents behave in a complex environment Get up to date with applications of deep learning in autonomous vehicles Who this book is for This book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book.
Deep Learning With Python Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-21
Deep Learning With Python Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-21 with Computers categories.
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
Mastering Python
DOWNLOAD
Author : Michael B. White
language : en
Publisher:
Release Date : 2019-01-13
Mastering Python written by Michael B. White and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-13 with Computers categories.
Unlike some guides that give you just the basics that you need to get started, this book teaches you everything you need to know about using Python, including what you can use it for. Python is a diverse language and is the foundation of much of what we use in the world today. The reader will be happy to know that this programming language is relatively easy to learn. The book is divided into five sections to make the journey easy for the student: ✅ Part 1 - Data Structures and Algorithms ✅ Part 2 - Machine Learning ✅ Part 3 - Django ✅ Part 4 - ArcGIS Programming ✅ Part 5 - Software Development and Testing ���� If you want to master python, order your copy today. ����
Machine Learning Engineering With Python
DOWNLOAD
Author : Blueblood
language : en
Publisher:
Release Date : 2021
Machine Learning Engineering With Python written by Blueblood and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book Description Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering. What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build r...