Download Large Language Models - eBooks (PDF)

Large Language Models


Large Language Models
DOWNLOAD

Download Large Language Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Language Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Large Language Models


Hands On Large Language Models
DOWNLOAD
Author : Jay Alammar
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2024-09-11

Hands On Large Language Models written by Jay Alammar and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-11 with Computers categories.


AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pre-trained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large amounts of text documents; and use existing libraries and pre-trained models for text classification, search, and clusterings. This book also shows you how to: Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build semantic search engines that go beyond keyword search with methods like dense retrieval and rerankers Learn various use cases where these models can provide value Understand the architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of how LLMs are trained Understanding how different methods of fine-tuning optimize LLMs for specific applications (generative model fine-tuning, contrastive fine-tuning, in-context learning, etc.)



Large Language Models A Deep Dive


Large Language Models A Deep Dive
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer Nature
Release Date : 2024-08-20

Large Language Models A Deep Dive written by Uday Kamath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-20 with Computers categories.


Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs—their intricate architecture, underlying algorithms, and ethical considerations—require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs. Key Features: Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learning Over 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applications Over 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deployment Over 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycle Nine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical concepts Over 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently



Large Language Models


Large Language Models
DOWNLOAD
Author : Oswald Campesato
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2024-10-02

Large Language Models written by Oswald Campesato and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-02 with Computers categories.


This book begins with an overview of the Generative AI landscape, distinguishing it from conversational AI and shedding light on the roles of key players like DeepMind and OpenAI. It then reviews the intricacies of ChatGPT, GPT-4, and Gemini, examining their capabilities, strengths, and competitors. Readers will also gain insights into the BERT family of LLMs, including ALBERT, DistilBERT, and XLNet, and how these models have revolutionized natural language processing. Further, the book covers prompt engineering techniques, essential for optimizing the outputs of AI models, and addresses the challenges of working with LLMs, including the phenomenon of hallucinations and the nuances of fine-tuning these advanced models. Designed for software developers, AI researchers, and technology enthusiasts with a foundational understanding of AI, this book offers both theoretical insights and practical code examples in Python. Companion files with code, figures, and datasets are available for downloading from the publisher.



Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python


Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python
DOWNLOAD
Author : Raj Arun
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-04-12

Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python written by Raj Arun and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.


A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise Key Features● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. Book Description “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. What you will learn ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. Table of Contents 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index



Ai Foundations Of Large Language Models


Ai Foundations Of Large Language Models
DOWNLOAD
Author : Jon Adams
language : en
Publisher: Green Mountain Computing
Release Date :

Ai Foundations Of Large Language Models written by Jon Adams and has been published by Green Mountain Computing this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Dive into the fascinating world of artificial intelligence with Jon Adams' groundbreaking book, AI Foundations of Large Language Models. This comprehensive guide serves as a beacon for both beginners and enthusiasts eager to understand the intricate mechanisms behind the digital forces shaping our future. With Adams' expert narration, readers are invited to explore the evolution of language models that have transformed mere strings of code into entities capable of human-like text generation. Key Features: In-depth Exploration: From the initial emergence to the sophisticated development of Large Language Models (LLMs), this book covers it all. Technical Insights: Understand the foundational technology, including neural networks, transformers, and attention mechanisms, that powers LLMs. Practical Applications: Discover how LLMs are being utilized in industry and research, paving the way for future innovations. Ethical Considerations: Engage with the critical discussions surrounding the ethics of LLM development and deployment. Chapters Include: The Emergence of Language Models: An introduction to the genesis of LLMs and their significance. Foundations of Neural Networks: Delve into the neural underpinnings that make it all possible. Transformers and Attention Mechanisms: Unpack the mechanisms that enhance LLM efficiency and accuracy. Training Large Language Models: A guide through the complexities of LLM training processes. Understanding LLMs Text Generation: Insights into how LLMs generate text that rivals human writing. Natural Language Understanding: Explore the advancements in LLMs' comprehension capabilities. Ethics and LLMs: A critical look at the ethical landscape of LLM technology. LLMs in Industry and Research: Real-world applications and the impact of LLMs across various sectors. The Future of Large Language Models: Speculations and predictions on the trajectory of LLM advancements. Whether you're a student, professional, or simply an AI enthusiast, AI Foundations of Large Language Models by Jon Adams offers a riveting narrative filled with insights and foresights. Equip yourself with the knowledge to navigate the burgeoning world of LLMs and appreciate their potential to redefine our technological landscape. Join us on this enlightening journey through the annals of artificial intelligence, where the future of digital communication and creativity awaits.



Quick Start Guide To Large Language Models


Quick Start Guide To Large Language Models
DOWNLOAD
Author : Sinan Ozdemir
language : en
Publisher: Addison-Wesley Professional
Release Date : 2023-09-20

Quick Start Guide To Large Language Models written by Sinan Ozdemir and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-20 with Computers categories.


The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.



The Practical Guide To Large Language Models


The Practical Guide To Large Language Models
DOWNLOAD
Author : Ivan Gridin
language : en
Publisher: Apress
Release Date : 2025-12-13

The Practical Guide To Large Language Models written by Ivan Gridin and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-12-13 with Computers categories.


This book is a practical guide to harnessing Hugging Face's powerful transformers library, unlocking access to the largest open-source LLMs. By simplifying complex NLP concepts and emphasizing practical application, it empowers data scientists, machine learning engineers, and NLP practitioners to build robust solutions without delving into theoretical complexities. The book is structured into three parts to facilitate a step-by-step learning journey. Part One covers building production-ready LLM solutions introduces the Hugging Face library and equips readers to solve most of the common NLP challenges without requiring deep knowledge of transformer internals. Part Two focuses on empowering LLMs with RAG and intelligent agents exploring Retrieval-Augmented Generation (RAG) models, demonstrating how to enhance answer quality and develop intelligent agents. Part Three covers LLM advances focusing on expert topics such as model training, principles of transformer architecture and other cutting-edge techniques related to the practical application of language models. Each chapter includes practical examples, code snippets, and hands-on projects to ensure applicability to real-world scenarios. This book bridges the gap between theory and practice, providing professionals with the tools and insights to develop practical and efficient LLM solutions. What you will learn: What are the different types of tasks modern LLMs can solve How to select the most suitable pre-trained LLM for specific tasks How to enrich LLM with a custom knowledge base and build intelligent systems What are the core principles of Language Models, and how to tune them How to build robust LLM-based AI Applications Who this book is for: Data scientists, machine learning engineers, and NLP specialists with basic Python skills, introductory PyTorch knowledge, and a primary understanding of deep learning concepts, ready to start applying Large Language Models in practice.



Mastering Large Language Models With Python


Mastering Large Language Models With Python
DOWNLOAD
Author : Raj Arun R
language : en
Publisher: Sextil Online LLC
Release Date : 2024-04-12

Mastering Large Language Models With Python written by Raj Arun R and has been published by Sextil Online LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.


“Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence.



Challenges And Applications Of Generative Large Language Models


Challenges And Applications Of Generative Large Language Models
DOWNLOAD
Author : Anitha S. Pillai
language : en
Publisher: Morgan Kaufmann
Release Date : 2026-01-30

Challenges And Applications Of Generative Large Language Models written by Anitha S. Pillai and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2026-01-30 with Computers categories.


Large Language Models (LLMs) are a form of generative AI, based on Deep Learning, that rely on very large textual datasets, and are composed of hundreds of millions (or even billions) of parameters. LLMs can be trained and then refined to perform several NLP tasks like generation of text, summarization, translation, prediction, and more. Challenges and Applications of Generative Large Language Models assists readers in understanding LLMs, their applications in various sectors, challenges that need to be encountered while developing them, open issues, and ethical concerns. LLMs are just one approach in the huge set of methodologies provided by AI. The book, describing strengths and weaknesses of such models, enables researchers and software developers to decide whether an LLM is the right choice for the problem they are trying to solve. AI is the new buzzword, in particular Generative AI for human language (LLMs). As such, an overwhelming amount of hype is obfuscating and giving a distorted view about AI in general, and LLMs in particular. Thus, trying to provide an objective description of LLMs is useful to any person (researcher, professional, student) who is starting to work with human language. The risk, otherwise, is to forget the whole set of methodologies developed by AI in the last decades, sticking with only one model which, although very powerful, has known weaknesses and risks. Given the high level of hype around such models, Challenges and Applications of Generative Large Language Models (LLMs) enables readers to clarify and understand their scope and limitations. - Provides a clear and objective description of LLMs, with their strengths and weaknesses - Demonstrates current applications of LLMs, along with strengths and known issues in each application - Covers not only the advantages but also risks that LLMs bring today, enabling readers to understand whether a particular LLM fits the problem at hand



Hands On Large Language Models


Hands On Large Language Models
DOWNLOAD
Author : Jay Alammar
language : en
Publisher:
Release Date : 2024-12-03

Hands On Large Language Models written by Jay Alammar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-03 with Computers categories.


AI has acquired startling new language capabilities in just the past few years. Driven by the rapid advances in deep learning, language AI systems are able to write and understand text better than ever before. This trend enables the rise of new features, products, and entire industries. With this book, Python developers will learn the practical tools and concepts they need to use these capabilities today. You'll learn how to use the power of pretrained large language models for use cases like copywriting and summarization; create semantic search systems that go beyond keyword matching; build systems that classify and cluster text to enable scalable understanding of large numbers of text documents; and use existing libraries and pretrained models for text classification, search, and clusterings. This book also shows you how to: Build advanced LLM pipelines to cluster text documents and explore the topics they belong to Build semantic search engines that go beyond keyword search with methods like dense retrieval and rerankers Learn various use cases where these models can provide value Understand the architecture of underlying Transformer models like BERT and GPT Get a deeper understanding of how LLMs are trained Optimize LLMs for specific applications with methods such as generative model fine-tuning, contrastive fine-tuning, and in-context learning