Quick Start Guide To Large Language Models
DOWNLOAD
Download Quick Start Guide To Large Language Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quick Start Guide To Large Language Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Quick Start Guide To Large Language Models
DOWNLOAD
Author : Sinan Ozdemir
language : en
Publisher: Addison-Wesley Professional
Release Date : 2023-09-20
Quick Start Guide To Large Language Models written by Sinan Ozdemir and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-20 with Computers categories.
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data Construct and fine-tune multimodal Transformer architectures using opensource LLMs Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind "By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application." --Giada Pistilli, Principal Ethicist at HuggingFace "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Quick Start Guide To Large Language Models Llms
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Independently Published
Release Date : 2024-07-11
Quick Start Guide To Large Language Models Llms written by Anand Vemula and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-11 with Computers categories.
"Quick Start Guide to Large Language Models (LLMs)" is a comprehensive manual designed to demystify the complexities of LLMs and equip readers with practical knowledge for leveraging these powerful AI tools. The book serves as an accessible entry point for beginners while providing valuable insights for experienced practitioners looking to deepen their expertise. The guide begins with a thorough introduction to LLMs, explaining their significance, fundamental concepts, and the wide range of applications they support. From enhancing customer service to driving advancements in healthcare, LLMs have become indispensable across various industries. Readers are then guided through the initial setup, including prerequisites, environment configuration, and the installation of necessary tools and libraries. This ensures a smooth start for anyone new to working with LLMs. The core of the book delves into the intricacies of training LLMs. It covers data collection and preparation, emphasizing the importance of high-quality data. The process of selecting the right model is discussed in detail, followed by a step-by-step guide to training, including best practices to optimize performance and prevent common pitfalls. Fine-tuning is highlighted as a crucial step in tailoring pre-trained models to specific tasks. Detailed instructions and practical examples are provided to illustrate the fine-tuning process, enabling readers to achieve optimal results with minimal data. The book also addresses the deployment of LLMs, offering insights into various deployment options, integration with applications, and best practices for monitoring and maintenance. Advanced topics such as transfer learning, handling large datasets, and performance optimization are explored to equip readers with the skills needed to handle complex scenarios. Real-world applications are showcased through case studies and industry-specific use cases, demonstrating the transformative impact of LLMs. The book concludes with a discussion of future trends and common challenges, providing practical solutions and ethical considerations to guide responsible AI development. Whether you're a novice or an expert, "Quick Start Guide to Large Language Models (LLMs)" offers a clear, concise, and practical pathway to mastering the potential of LLMs.
Quick Start Guide To Llms
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Independently Published
Release Date : 2024-07-04
Quick Start Guide To Llms written by Anand Vemula and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-04 with Computers categories.
"Quick Start Guide to LLMs: Hands-On with Large Language Models" is a comprehensive yet concise manual designed to equip readers with the knowledge and skills needed to understand and utilize Large Language Models (LLMs). The book delves into the fascinating world of LLMs, exploring their significance, architecture, and practical applications. The introduction sets the stage by explaining what LLMs are and why they are important in today's AI landscape. It provides an overview of the book, outlining the key topics covered in each chapter. Chapter 1, "Understanding the Basics," lays the foundation by discussing the core concepts, history, and evolution of LLMs. It introduces key terminology and explains the fundamental principles that underpin these powerful models. In Chapter 2, "Getting Started with LLMs," readers learn how to set up their environment, including software and hardware requirements. This chapter provides step-by-step instructions for installing necessary tools and libraries, making it easy for beginners to start working with LLMs. Chapter 3, "Core Components and Architecture," takes a deep dive into the internal workings of LLMs. It covers model architecture, training data, preprocessing, and techniques for fine-tuning and customization, offering readers a thorough understanding of how these models operate. Chapter 4, "Hands-On with LLMs," is the heart of the book. It guides readers through basic operations such as text generation, text completion, and summarization. It also explores advanced use cases, including translation, question answering, and building dialogue systems, with practical examples and code snippets. Chapter 5, "Practical Applications," shows how to integrate LLMs into projects with real-world case studies and examples. Readers will learn how to define problems, choose the right models, implement solutions, and deploy applications effectively. In Chapter 6, "Best Practices and Optimization," the book offers strategies for improving performance, managing costs, and ensuring efficient operation. It covers topics like model optimization, resource management, and cost reduction techniques. Chapter 7, "Ethical Considerations," addresses the crucial issues of bias, fairness, and privacy. It provides guidelines for mitigating risks and ensuring ethical use of LLMs. Finally, Chapter 8, "Future Trends and Innovations," looks ahead to the evolving landscape of LLMs. It discusses emerging technologies, industry trends, and the future directions of AI, helping readers stay informed and prepared for what's next. "Quick Start Guide to LLMs: Hands-On with Large Language Models" is an essential resource for anyone looking to harness the power of LLMs, offering practical insights and hands-on experience in building and deploying AI solutions.
Quick Start Guide To Large Language Models
DOWNLOAD
Author : Sinan Ozdemir
language : en
Publisher: Addison-Wesley Professional
Release Date : 2024-09-26
Quick Start Guide To Large Language Models written by Sinan Ozdemir and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-26 with Computers categories.
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like Llama 3, Claude 3, and the GPT family are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, Second Edition, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, and hands-on exercises. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, prompting, fine-tuning, performance, and much more. The resources on the companion website include sample datasets and up-to-date code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and GPT-3.5), Google (BERT, T5, and Gemini), X (Grok), Anthropic (the Claude family), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for building retrieval-augmented generation (RAG) chatbots and AI Agents Master advanced prompt engineering techniques like output structuring, chain-of-thought prompting, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data that outperforms out-of-the-box embeddings from OpenAI Construct and fine-tune multimodal Transformer architectures from scratch using open-source LLMs and large visual datasets Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) to build conversational agents from open models like Llama 3 and FLAN-T5 Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind Diagnose and optimize LLMs for speed, memory, and performance with quantization, probing, benchmarking, and evaluation frameworks "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Build A Large Language Model From Scratch
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Simon and Schuster
Release Date : 2024-10-29
Build A Large Language Model From Scratch written by Sebastian Raschka and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-29 with Computers categories.
Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! In Build a Large Language Model (from Scratch) bestselling author Sebastian Raschka guides you step by step through creating your own LLM. Each stage is explained with clear text, diagrams, and examples. You’ll go from the initial design and creation, to pretraining on a general corpus, and on to fine-tuning for specific tasks. Build a Large Language Model (from Scratch) teaches you how to: • Plan and code all the parts of an LLM • Prepare a dataset suitable for LLM training • Fine-tune LLMs for text classification and with your own data • Use human feedback to ensure your LLM follows instructions • Load pretrained weights into an LLM Build a Large Language Model (from Scratch) takes you inside the AI black box to tinker with the internal systems that power generative AI. As you work through each key stage of LLM creation, you’ll develop an in-depth understanding of how LLMs work, their limitations, and their customization methods. Your LLM can be developed on an ordinary laptop, and used as your own personal assistant. About the technology Physicist Richard P. Feynman reportedly said, “I don’t understand anything I can’t build.” Based on this same powerful principle, bestselling author Sebastian Raschka guides you step by step as you build a GPT-style LLM that you can run on your laptop. This is an engaging book that covers each stage of the process, from planning and coding to training and fine-tuning. About the book Build a Large Language Model (From Scratch) is a practical and eminently-satisfying hands-on journey into the foundations of generative AI. Without relying on any existing LLM libraries, you’ll code a base model, evolve it into a text classifier, and ultimately create a chatbot that can follow your conversational instructions. And you’ll really understand it because you built it yourself! What's inside • Plan and code an LLM comparable to GPT-2 • Load pretrained weights • Construct a complete training pipeline • Fine-tune your LLM for text classification • Develop LLMs that follow human instructions About the reader Readers need intermediate Python skills and some knowledge of machine learning. The LLM you create will run on any modern laptop and can optionally utilize GPUs. About the author Sebastian Raschka, PhD, is an LLM Research Engineer with over a decade of experience in artificial intelligence. His work spans industry and academia, including implementing LLM solutions as a senior engineer at Lightning AI and teaching as a statistics professor at the University of Wisconsin–Madison. Sebastian collaborates with Fortune 500 companies on AI solutions and serves on the Open Source Board at University of Wisconsin–Madison. He specializes in LLMs and the development of high-performance AI systems, with a deep focus on practical, code-driven implementations. He is the author of the bestselling books Machine Learning with PyTorch and Scikit-Learn, and Machine Learning Q and AI. The technical editor on this book was David Caswell. Table of Contents 1 Understanding large language models 2 Working with text data 3 Coding attention mechanisms 4 Implementing a GPT model from scratch to generate text 5 Pretraining on unlabeled data 6 Fine-tuning for classification 7 Fine-tuning to follow instructions A Introduction to PyTorch B References and further reading C Exercise solutions D Adding bells and whistles to the training loop E Parameter-efficient fine-tuning with LoRA
Test Yourself On Build A Large Language Model From Scratch
DOWNLOAD
Author :
language : en
Publisher: Simon and Schuster
Release Date : 2025-07-22
Test Yourself On Build A Large Language Model From Scratch written by and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-22 with Computers categories.
Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! Sebastian Raschka’s bestselling book Build a Large Language Model (From Scratch) is the best way to learn how Large Language Models function. It uses Python and the PyTorch deep learning library. It’s a unique way to learn this subject, which some believe is the only way to truly learn: you build a model yourself. Even with the clear explanations, diagrams, and code in the book, learning a complex subject is still hard. This Test Yourself guide intends to make it a little easier. The structure mirrors the structure of Build a Large Language Model (From Scratch), focusing on key concepts from each chapter. You can test yourself with multiple-choice quizzes, questions on code and key concepts, and questions with longer answers that push you to think critically. The answers to all questions are provided. Depending on what you know at any point, this Test Yourself guide can help you in different ways. It will solidify your knowledge if used after reading a chapter. But it will also benefit you if you digest it before reading. By testing yourself on the main concepts and their relationships you are primed to navigate a chapter more easily and be ready for its messages. We recommend using it before and after reading, as well as later when you have started forgetting. Repeated learning solidifies our knowledge and integrates it with related knowledge already in our long-term memory. What's inside • Questions on code and key concepts • Critical thinking exercises requiring longer answers • Answers for all questions About the reader For readers of Build a Large Language Model (From Scratch) who want to enhance their learning with exercises and self-assessment tools. About the author Curated from Build a Large Language Model (From Scratch)
The Unified Modeling Language User Guide
DOWNLOAD
Author : Grady Booch
language : en
Publisher: Addison-Wesley Professional
Release Date : 1999
The Unified Modeling Language User Guide written by Grady Booch and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Computers categories.
The first of two UML works written by the creators of UML, this book introduces the core 80 percent of UML, approaching it in a layered fashion and providing numerous examples of its application.
Ic 86 Compiler User S Guide For Dos Systems
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1985
Ic 86 Compiler User S Guide For Dos Systems written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985 with C (Computer program language) categories.
Infoworld
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1991
Infoworld written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Computer industry categories.
Documentation Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1995
Documentation Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Documentation categories.