Download Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data - eBooks (PDF)

Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data


Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data
DOWNLOAD

Download Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data


Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data
DOWNLOAD
Author : Kristin Blesch
language : en
Publisher:
Release Date : 2024

Interpretable Machine Learning And Generative Modeling With Mixed Tabular Data written by Kristin Blesch and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with categories.


Explainable artificial intelligence or interpretable machine learning techniques aim to shed light on the behavior of opaque machine learning algorithms, yet often fail to acknowledge the challenges real-world data imposes on the task. Specifically, the fact that empirical tabular datasets may consist of both continuous and categorical features (mixed data) and typically exhibit dependency structures is frequently overlooked. This work uses a statistical perspective to illuminate the far-reaching implications of mixed data and dependency structures for interpretability in machine learning. Several interpretability methods are advanced with a particular focus on this kind of data, evaluating their performance on simulated and real data sets. Further, this cumulative thesis emphasizes that generating synthetic data is a crucial subroutine for many interpretability methods. Therefore, this thesis also advances methodology in generative modeling concerning mixed tabular data, presenting a tree-based approach for density estimation and data generation, accompanied by a user-friendly software implementation in the Python programming language.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Machine Learning For Tabular Data


Machine Learning For Tabular Data
DOWNLOAD
Author : Mark Ryan
language : en
Publisher: Simon and Schuster
Release Date : 2025-03-04

Machine Learning For Tabular Data written by Mark Ryan and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-04 with Computers categories.


Business runs on tabular data in databases, spreadsheets, and logs. Crunch that data using deep learning, gradient boosting, and other machine learning techniques. Machine Learning for Tabular Data teaches you to train insightful machine learning models on common tabular business data sources such as spreadsheets, databases, and logs. You’ll discover how to use XGBoost and LightGBM on tabular data, optimize deep learning libraries like TensorFlow and PyTorch for tabular data, and use cloud tools like Vertex AI to create an automated MLOps pipeline. Machine Learning for Tabular Data will teach you how to: • Pick the right machine learning approach for your data • Apply deep learning to tabular data • Deploy tabular machine learning locally and in the cloud • Pipelines to automatically train and maintain a model Machine Learning for Tabular Data covers classic machine learning techniques like gradient boosting, and more contemporary deep learning approaches. By the time you’re finished, you’ll be equipped with the skills to apply machine learning to the kinds of data you work with every day. Foreword by Antonio Gulli. About the technology Machine learning can accelerate everyday business chores like account reconciliation, demand forecasting, and customer service automation—not to mention more exotic challenges like fraud detection, predictive maintenance, and personalized marketing. This book shows you how to unlock the vital information stored in spreadsheets, ledgers, databases and other tabular data sources using gradient boosting, deep learning, and generative AI. About the book Machine Learning for Tabular Data delivers practical ML techniques to upgrade every stage of the business data analysis pipeline. In it, you’ll explore examples like using XGBoost and Keras to predict short-term rental prices, deploying a local ML model with Python and Flask, and streamlining workflows using large language models (LLMs). Along the way, you’ll learn to make your models both more powerful and more explainable. What's inside • Master XGBoost • Apply deep learning to tabular data • Deploy models locally and in the cloud • Build pipelines to train and maintain models About the reader For readers experienced with Python and the basics of machine learning. About the author Mark Ryan is the AI Lead of the Developer Knowledge Platform at Google. A three-time Kaggle Grandmaster, Luca Massaron is a Google Developer Expert (GDE) in machine learning and AI. He has published 17 other books. Table of Contents Part 1 1 Understanding tabular data 2 Exploring tabular datasets 3 Machine learning vs. deep learning Part 2 4 Classical algorithms for tabular data 5 Decision trees and gradient boosting 6 Advanced feature processing methods 7 An end-to-end example using XGBoost Part 3 8 Getting started with deep learning with tabular data 9 Deep learning best practices 10 Model deployment 11 Building a machine learning pipeline 12 Blending gradient boosting and deep learning A Hyperparameters for classical machine learning models B K-nearest neighbors and support vector machines



Synthesizing Tabular Data Using Conditional Gan


Synthesizing Tabular Data Using Conditional Gan
DOWNLOAD
Author : Lei Xu (S.M.)
language : en
Publisher:
Release Date : 2020

Synthesizing Tabular Data Using Conditional Gan written by Lei Xu (S.M.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


In data science, the ability to model the distribution of rows in tabular data and generate realistic synthetic data enables various important applications including data compression, data disclosure, and privacy-preserving machine learning. However, because tabular data usually contains a mix of discrete and continuous columns, building such a model is a non-trivial task. Continuous columns may have multiple modes, while discrete columns are sometimes imbalanced, making modeling difficult. To address this problem, I took two major steps. (1) I designed SDGym, a thorough benchmark, to compare existing models, identify different properties of tabular data and analyze how these properties challenge different models. Our experimental results show that statistical models, such as Bayesian networks, that are constrained to a fixed family of available distributions cannot model tabular data effectively, especially when both continuous and discrete columns are included. Recently proposed deep generative models are capable of modeling more sophisticated distributions, but cannot outperform Bayesian network models in practice, because the network structure and learning procedure are not optimized for tabular data which may contain non-Gaussian continuous columns and imbalanced discrete columns. (2) To address these problems, I designed CTGAN, which uses a conditional generative adversarial network to address the challenges in modeling tabular data. Because CTGAN uses reversible data transformations and is trained by re-sampling the data, it can address common challenges in synthetic data generation. I evaluated CTGAN on the benchmark and showed that it consistently and significantly outperforms existing statistical and deep learning models.



Synthetic Data And Generative Ai


Synthetic Data And Generative Ai
DOWNLOAD
Author : Vincent Granville
language : en
Publisher: Elsevier
Release Date : 2024-01-09

Synthetic Data And Generative Ai written by Vincent Granville and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-09 with Computers categories.


Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques – including logistic and Lasso – are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. - Emphasizes numerical stability and performance of algorithms (computational complexity) - Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field - Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique - Covers automation of data cleaning, favoring easier solutions when possible - Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity



Interpretable Ai


Interpretable Ai
DOWNLOAD
Author : Ajay Thampi
language : en
Publisher: Simon and Schuster
Release Date : 2022-07-26

Interpretable Ai written by Ajay Thampi and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-26 with Computers categories.


AI doesn’t have to be a black box. These practical techniques help shine a light on your model’s mysterious inner workings. Make your AI more transparent, and you’ll improve trust in your results, combat data leakage and bias, and ensure compliance with legal requirements. In Interpretable AI, you will learn: Why AI models are hard to interpret Interpreting white box models such as linear regression, decision trees, and generalized additive models Partial dependence plots, LIME, SHAP and Anchors, and other techniques such as saliency mapping, network dissection, and representational learning What fairness is and how to mitigate bias in AI systems Implement robust AI systems that are GDPR-compliant Interpretable AI opens up the black box of your AI models. It teaches cutting-edge techniques and best practices that can make even complex AI systems interpretable. Each method is easy to implement with just Python and open source libraries. You’ll learn to identify when you can utilize models that are inherently transparent, and how to mitigate opacity when your problem demands the power of a hard-to-interpret deep learning model. About the technology It’s often difficult to explain how deep learning models work, even for the data scientists who create them. Improving transparency and interpretability in machine learning models minimizes errors, reduces unintended bias, and increases trust in the outcomes. This unique book contains techniques for looking inside “black box” models, designing accountable algorithms, and understanding the factors that cause skewed results. About the book Interpretable AI teaches you to identify the patterns your model has learned and why it produces its results. As you read, you’ll pick up algorithm-specific approaches, like interpreting regression and generalized additive models, along with tips to improve performance during training. You’ll also explore methods for interpreting complex deep learning models where some processes are not easily observable. AI transparency is a fast-moving field, and this book simplifies cutting-edge research into practical methods you can implement with Python. What's inside Techniques for interpreting AI models Counteract errors from bias, data leakage, and concept drift Measuring fairness and mitigating bias Building GDPR-compliant AI systems About the reader For data scientists and engineers familiar with Python and machine learning. About the author Ajay Thampi is a machine learning engineer focused on responsible AI and fairness. Table of Contents PART 1 INTERPRETABILITY BASICS 1 Introduction 2 White-box models PART 2 INTERPRETING MODEL PROCESSING 3 Model-agnostic methods: Global interpretability 4 Model-agnostic methods: Local interpretability 5 Saliency mapping PART 3 INTERPRETING MODEL REPRESENTATIONS 6 Understanding layers and units 7 Understanding semantic similarity PART 4 FAIRNESS AND BIAS 8 Fairness and mitigating bias 9 Path to explainable AI



Personalized Machine Learning


Personalized Machine Learning
DOWNLOAD
Author : Julian McAuley
language : en
Publisher: Cambridge University Press
Release Date : 2022-02-03

Personalized Machine Learning written by Julian McAuley and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-03 with Business & Economics categories.


Explains methods behind machine learning systems to personalize predictions to individual users, from recommendation to dating and fashion.



Machine Learning Interpretability Explaining Ai Models To Humans


Machine Learning Interpretability Explaining Ai Models To Humans
DOWNLOAD
Author : Dr. Faisal Alghayadh
language : en
Publisher: Xoffencerpublication
Release Date : 2024-01-10

Machine Learning Interpretability Explaining Ai Models To Humans written by Dr. Faisal Alghayadh and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-10 with Computers categories.


Within the ever-evolving realm of artificial intelligence (AI), the field of Machine Learning Interpretability (MLI) has surfaced as a crucial conduit, serving as a vital link between the intricate nature of sophisticated AI models and the pressing necessity for lucid decision-making procedures in practical scenarios. With the progressive integration of AI systems across various domains, ranging from healthcare to finance, there arises an escalating need for transparency and accountability concerning the operational mechanisms of these intricate models. The pursuit of interpretability in machine learning is of paramount importance in comprehending the enigmatic essence of artificial intelligence. It provides a structured methodology to unravel the intricate mechanisms of algorithms, thereby rendering their outputs intelligible to human stakeholders. The Multimodal Linguistic Interface (MLI) functions as a pivotal conduit, bridging the dichotomous domains of binary machine intelligence and the intricate cognitive faculties of human comprehension. Its primary purpose lies in fostering a mutually beneficial association, wherein the potential of artificial intelligence can be harnessed with efficacy and conscientiousness. The transition from perceiving AI as a "black box" to embracing a more transparent and interpretable framework represents a significant paradigm shift. This shift not only fosters trust in AI technologies but also empowers various stakeholders such as end-users, domain experts, and policymakers. By gaining a deeper understanding of AI model outputs, these stakeholders are equipped to make informed decisions with confidence. In the current epoch characterized by remarkable progress in technology, the importance of Machine Learning Interpretability is underscored as a pivotal element for the conscientious and ethical implementation of AI. This development heralds a novel era wherein artificial intelligence harmoniously interfaces with human intuition and expertise



Innovations In Machine And Deep Learning


Innovations In Machine And Deep Learning
DOWNLOAD
Author : Gilberto Rivera
language : en
Publisher: Springer Nature
Release Date : 2023-09-28

Innovations In Machine And Deep Learning written by Gilberto Rivera and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-28 with Computers categories.


In recent years, significant progress has been made in achieving artificial intelligence (AI) with an impact on students, managers, scientists, health personnel, technical roles, investors, teachers, and leaders. This book presents numerous successful applications of AI in various contexts. The innovative implications covered fall under the general field of machine learning (ML), including deep learning, decision-making, forecasting, pattern recognition, information retrieval, and interpretable AI. Decision-makers and entrepreneurs will find numerous successful applications in health care, sustainability, risk management, human activity recognition, logistics, and Industry 4.0. This book is an essential resource for anyone interested in challenges, opportunities, and the latest developments and real-world applications of ML. Whether you are a student, researcher, practitioner, or simply curious about AI, this book provides valuable insights and inspiration for your work and learning.



Machine Learning And Knowledge Discovery In Databases Research Track And Applied Data Science Track


Machine Learning And Knowledge Discovery In Databases Research Track And Applied Data Science Track
DOWNLOAD
Author : Bernhard Pfahringer
language : en
Publisher: Springer Nature
Release Date : 2025-10-03

Machine Learning And Knowledge Discovery In Databases Research Track And Applied Data Science Track written by Bernhard Pfahringer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-03 with Computers categories.


This multi-volume set, LNAI 16013 to LNAI 16022, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2025, held in Porto, Portugal, September 15–19, 2025. !-- [if !supportLineBreakNewLine]-- !--[endif]-- The 300 full papers presented here, together with 15 demo papers, were carefully reviewed and selected from 1253 submissions. The papers presented in these proceedings are from the following three conference tracks: The Research Track in Volume LNAI 16013-16020 refers about Anomaly & Outlier Detection, Bias & Fairness, Causality, Clustering, Data Challenges, Diffusion Models, Ensemble Learning, Graph Neural Networks, Graphs & Networks, Healthcare & Bioinformatics, Images & Computer Vision, Interpretability & Explainability, Large Language Models, Learning Theory, Multimodal Data, Neuro Symbolic Approaches, Optimization, Privacy & Security, Recommender Systems, Reinforcement Learning, Representation Learning, Resource Efficiency, Robustness & Uncertainty, Sequence Models, Streaming & Spatiotemporal Data, Text & Natural Language Processing, Time Series, and Transfer & Multitask Learning. The Applied Data Science Track in Volume LNAI 16020-16022 refers about Agriculture, Food and Earth Sciences, Education, Engineering and Technology, Finance, Economy, Management or Marketing, Health, Biology, Bioinformatics or Chemistry, Industry (4.0, 5.0, Manufacturing, ...), Smart Cities, Transportation and Utilities (e.g., Energy), Sports, and Web and Social Networks The Demo Track in LNAI 16022 showcased practical applications and prototypes, accepting 15 papers from a total of 30 submissions. These proceedings cover the papers accepted in the research and applied data science tracks.