Download Hands On Unsupervised Learning With Python - eBooks (PDF)

Hands On Unsupervised Learning With Python


Hands On Unsupervised Learning With Python
DOWNLOAD

Download Hands On Unsupervised Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Unsupervised Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Unsupervised Learning With Python


Hands On Unsupervised Learning With Python
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-28

Hands On Unsupervised Learning With Python written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-28 with Computers categories.


Discover the skill-sets required to implement various approaches to Machine Learning with Python Key FeaturesExplore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and moreBuild your own neural network models using modern Python librariesPractical examples show you how to implement different machine learning and deep learning techniquesBook Description Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges. What you will learnUse cluster algorithms to identify and optimize natural groups of dataExplore advanced non-linear and hierarchical clustering in actionSoft label assignments for fuzzy c-means and Gaussian mixture modelsDetect anomalies through density estimationPerform principal component analysis using neural network modelsCreate unsupervised models using GANsWho this book is for This book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.



Hands On Unsupervised Learning Using Python


Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-02-21

Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks



Hands On Unsupervised Learning Using Python


Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher:
Release Date : 2018

Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Artificial intelligence categories.




Hands On Unsupervised Learning With Python


Hands On Unsupervised Learning With Python
DOWNLOAD
Author : Stefan Jansen
language : en
Publisher:
Release Date : 2018

Hands On Unsupervised Learning With Python written by Stefan Jansen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


"This course explains the most important Unsupervised Learning algorithms using real-world examples of business applications in Python code. This course will allow you to utilize Principal Component Analysis, and to visualize and interpret the results of your datasets such as the ones in the above description. You will also be able to apply hard and soft clustering methods (k-Means and Gaussian Mixture Models) to assign segment labels to customers categorized in your sample data sets."--Resource description page.



Hands On Machine Learning With Python


Hands On Machine Learning With Python
DOWNLOAD
Author : Ashwin Pajankar
language : en
Publisher: Apress
Release Date : 2022-03-20

Hands On Machine Learning With Python written by Ashwin Pajankar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-20 with Computers categories.


Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll Learn Review data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithm Understand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networks Get acquainted with scikit-learn and PyTorch Predict sequences in recurrent neural networks and long short term memory Who This Book Is For Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.



Machine Learning In Python


Machine Learning In Python
DOWNLOAD
Author : Bob Mather
language : en
Publisher: Abiprod Pty Ltd
Release Date : 2019-11-16

Machine Learning In Python written by Bob Mather and has been published by Abiprod Pty Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-16 with Computers categories.


Are you excited about Artificial Intelligence and want to get started?Are you excited about Machine Learning and want to learn how to implement in Python? The book below is the answer. Given the large amounts of data we use everyday; whether it is in the web, supermarkets, social media etc. analysis of data has become integral to our daily life. The ability to do so effectively can propel your career or business to great heights. Machine Learning is the most effective data analysis tool. While it is a complex topic, it can be broken down into simpler steps, as show in this book. We are using Python, which is a great programming language for beginners. Python is a great language that is commonly used with Machine Learning. Python is used extensively in Mathematics, Gaming and Graphic Design. It is fast to develop and prototype. It is web capable, meaning that we can use Python to gather web data. It is adaptable, and has great community of users. Here's What's Included In This Book: What is Machine Learning?Why use Python?Regression Analysis using Python with an exampleClustering Analysis using Python with an exampleImplementing an Artificial Neural NetworkBackpropagation90 Day Plan to Learn and Implement Machine LearningConclusion



Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits


Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits
DOWNLOAD
Author : Tarek Amr
language : en
Publisher:
Release Date : 2020-07-24

Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits written by Tarek Amr and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-24 with Computers categories.




Hands On Transfer Learning With Python


Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.



Hands On Machine Learning With Scikit Learn And Tensorflow


Hands On Machine Learning With Scikit Learn And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-03-13

Hands On Machine Learning With Scikit Learn And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-13 with Computers categories.


Graphics in this book are printed in black and white. Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details



Hands On Machine Learning With Scikit Learn


Hands On Machine Learning With Scikit Learn
DOWNLOAD
Author : Amir Ali
language : en
Publisher:
Release Date : 2019-03-10

Hands On Machine Learning With Scikit Learn written by Amir Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-10 with categories.


Hands-On Machine Learning with Scikit-Learn Book Description In this Book Hands-On Machine Learning with Scikit Learn. The author covered both Supervised and Unsupervised Machine Learning Algorithms. The authors explain both Theoretical and Practical Implementation in depth and Explain Each Algorithm from Scratch. For Practical Implementation uses the Scikit-learn Library in this book. Scikit-Learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement variously supervised and unsupervised machine learning models. You will learn classification, regression, Association Rule, clustering techniques and Dimensionality Reduction Techniques to work with different types of datasets and train your models. Key Features ● Learn Supervised & Unsupervised Machine Learning Algorithms in Depth. ●Build your first machine learning model using scikit-learn ●Train supervised and unsupervised models using popular techniques such as classification, regression, clustering and Dimensionality Reduction. ●Understand how scikit-learn can be applied to different types of machine learning problems What you will learn ●Perform classification and regression machine learning ●Employ Unsupervised Machine Learning Algorithms to cluster unlabeled data into groups ●Apply the Dimensionality Reduction Technique for reducing the Dimensionality of the dataset Who this book is for ●Anyone who interesting in Machine Learning. ●Fundamental knowledge of linear algebra and probability will help. ●Intermediate knowledge of Python programming Table of Contents 1. Introduction to Machine Learning 2. Linear Regression 3. Naïve Bayes 4. Decision Tree ( classification & Regression ) 5. Random Forrest( classification & Regression ) 6. K-Nearest Neighbors 7. Logistic Regression 8. Support Vector Machine 9. Association Rule ( Apriori & Eclat ) 10. Clustering ( K-Mean & Hierarchical ) 11. Dimensionality Reduction ( PCA & LDA )