Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits
DOWNLOAD
Download Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits
DOWNLOAD
Author : Tarek Amr
language : en
Publisher:
Release Date : 2020-07-24
Hands On Machine Learning With Scikit Learn And Scientific Python Toolkits written by Tarek Amr and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-24 with Computers categories.
Hands On Machine Learning With Scikit Learn And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-03-13
Hands On Machine Learning With Scikit Learn And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-13 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--scikit-learn and TensorFlow--author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Hands On Machine Learning With Scikit Learn And Pytorch
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2025-10-22
Hands On Machine Learning With Scikit Learn And Pytorch written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-22 with Computers categories.
The potential of machine learning today is extraordinary, yet many aspiring developers and tech professionals find themselves daunted by its complexity. Whether you're looking to enhance your skill set and apply machine learning to real-world projects or are simply curious about how AI systems function, this book is your jumping-off place. With an approachable yet deeply informative style, author Aurélien Géron delivers the ultimate introductory guide to machine learning and deep learning. Drawing on the Hugging Face ecosystem, with a focus on clear explanations and real-world examples, the book takes you through cutting-edge tools like Scikit-Learn and PyTorch—from basic regression techniques to advanced neural networks. Whether you're a student, professional, or hobbyist, you'll gain the skills to build intelligent systems. Understand ML basics, including concepts like overfitting and hyperparameter tuning Complete an end-to-end ML project using scikit-Learn, covering everything from data exploration to model evaluation Learn techniques for unsupervised learning, such as clustering and anomaly detection Build advanced architectures like transformers and diffusion models with PyTorch Harness the power of pretrained models—including LLMs—and learn to fine-tune them Train autonomous agents using reinforcement learning
Hands On Machine Learning With Python
DOWNLOAD
Author : Ashwin Pajankar
language : en
Publisher: Apress
Release Date : 2022-03-20
Hands On Machine Learning With Python written by Ashwin Pajankar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-20 with Computers categories.
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll Learn Review data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithm Understand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networks Get acquainted with scikit-learn and PyTorch Predict sequences in recurrent neural networks and long short term memory Who This Book Is For Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-10-04
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-04 with Computers categories.
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-05
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Scikit Learn Cookbook
DOWNLOAD
Author : John Sukup
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-12-19
Scikit Learn Cookbook written by John Sukup and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-12-19 with Computers categories.
Get hands-on with the most widely used Python library in machine learning with over 80 practical recipes that cover core as well as advanced functions Free with your book: DRM-free PDF version + access to Packt's next-gen Reader* Key Features Solve complex business problems with data-driven approaches Master tools associated with developing predictive and prescriptive models Build robust ML pipelines for real-world applications, avoiding common pitfalls Free with your book: PDF Copy, AI Assistant, and Next-Gen Reader Book DescriptionTrusted by data scientists, ML engineers, and software developers alike, scikit-learn offers a versatile, user-friendly framework for implementing a wide range of ML algorithms, enabling the efficient development and deployment of predictive models in real-world applications. This third edition of scikit-learn Cookbook will help you master ML with real-world examples and scikit-learn 1.5 features. This updated edition takes you on a journey from understanding the fundamentals of ML and data preprocessing, through implementing advanced algorithms and techniques, to deploying and optimizing ML models in production. Along the way, you’ll explore practical, step-by-step recipes that cover everything from feature engineering and model selection to hyperparameter tuning and model evaluation, all using scikit-learn. By the end of this book, you’ll have gained the knowledge and skills needed to confidently build, evaluate, and deploy sophisticated ML models using scikit-learn, ready to tackle a wide range of data-driven challenges. *Email sign-up and proof of purchase requiredWhat you will learn Implement a variety of ML algorithms, from basic classifiers to complex ensemble methods, using scikit-learn Perform data preprocessing, feature engineering, and model selection to prepare datasets for optimal model performance Optimize ML models through hyperparameter tuning and cross-validation techniques to improve accuracy and reliability Deploy ML models for scalable, maintainable real-world applications Evaluate and interpret models with advanced metrics and visualizations in scikit-learn Explore comprehensive, hands-on recipes tailored to scikit-learn version 1.5 Who this book is for This book is for data scientists as well as machine learning and software development professionals looking to deepen their understanding of advanced ML techniques. To get the most out of this book, you should have proficiency in Python programming and familiarity with commonly used ML libraries; e.g., pandas, NumPy, matplotlib, and sciPy. An understanding of basic ML concepts, such as linear regression, decision trees, and model evaluation metrics will be helpful. Familiarity with mathematical concepts such as linear algebra, calculus, and probability will also be invaluable.
Data Science Projects With Python
DOWNLOAD
Author : Stephen Klosterman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30
Data Science Projects With Python written by Stephen Klosterman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.
Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.
Hands On Scikit Learn For Machine Learning Applications
DOWNLOAD
Author : David Paper
language : en
Publisher: Apress
Release Date : 2019-11-16
Hands On Scikit Learn For Machine Learning Applications written by David Paper and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-16 with Mathematics categories.
Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine. All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complexmachine learning algorithms. Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python. What You'll Learn Work with simple and complex datasets common to Scikit-Learn Manipulate data into vectors and matrices for algorithmic processing Become familiar with the Anaconda distribution used in data science Apply machine learning with Classifiers, Regressors, and Dimensionality Reduction Tune algorithms and find the best algorithms for each dataset Load data from and save to CSV, JSON, Numpy, and Pandas formats Who This Book Is For The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.
Practical Data Science With Python
DOWNLOAD
Author : Nathan George
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-30
Practical Data Science With Python written by Nathan George and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.
Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed.