Financial Data Analytics With R
DOWNLOAD
Download Financial Data Analytics With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Financial Data Analytics With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Financial Data Analytics With R
DOWNLOAD
Author : Jenny K. Chen
language : en
Publisher: CRC Press
Release Date : 2024-07-12
Financial Data Analytics With R written by Jenny K. Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-12 with Mathematics categories.
Financial Data Analysis with R: Monte-Carlo Validation is a comprehensive exploration of statistical methodologies and their applications in finance. Readers are taken on a journey in each chapter through practical explanations and examples, enabling them to develop a solid foundation of these methods in R and their applications in finance. This book serves as an indispensable resource for finance professionals, analysts, and enthusiasts seeking to harness the power of data-driven decision-making. The book goes beyond just teaching statistical methods in R and incorporates a unique section of informative Monte-Carlo simulations. These Monte-Carlo simulations are uniquely designed to showcase the reader the potential consequences and misleading conclusions that can arise when fundamental model assumptions are violated. Through step-by-step tutorials and realworld cases, readers will learn how and why model assumptions are important to follow. With a focus on practicality, Financial Data Analysis with R: Monte-Carlo Validation equips readers with the skills to construct and validate financial models using R. The Monte-Carlo simulation exercises provide a unique opportunity to understand the methods further, making this book an essential tool for anyone involved in financial analysis, investment strategy, or risk management. Whether you are a seasoned professional or a newcomer to the world of financial analytics, this book serves as a guiding light, empowering you to navigate the landscape of finance with precision and confidence. Key Features: An extensive compilation of commonly used financial data analytics methods from fundamental to advanced levels Learn how to model and analyze financial data with step-by-step illustrations in R and ready-to-use publicly available data Includes Monte-Carlo simulations uniquely designed to showcase the reader the potential consequences and misleading conclusions that arise when fundamental model assumptions are violated Data and computer programs are available for readers to replicate and implement the models and methods themselves
Financial Analytics With R
DOWNLOAD
Author : Mark J. Bennett
language : en
Publisher: Cambridge University Press
Release Date : 2016-10-06
Financial Analytics With R written by Mark J. Bennett and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-06 with Business & Economics categories.
Financial Analytics with R sharpens readers' skills in time-series, forecasting, portfolio selection, covariance clustering, prediction, and derivative securities.
Financial Data Analytics
DOWNLOAD
Author : Sinem Derindere Köseoğlu
language : en
Publisher: Springer Nature
Release Date : 2022-04-25
Financial Data Analytics written by Sinem Derindere Köseoğlu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-25 with Business & Economics categories.
This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.
Modeling Techniques In Predictive Analytics With Python And R
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29
Modeling Techniques In Predictive Analytics With Python And R written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Financial Data Analytics With R
DOWNLOAD
Author : Jenny K. Chen
language : en
Publisher: CRC Press
Release Date : 2024-07-12
Financial Data Analytics With R written by Jenny K. Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-12 with Mathematics categories.
Financial Data Analysis with R: Monte-Carlo Validation is a comprehensive exploration of statistical methodologies and their applications in finance. Readers are taken on a journey in each chapter through practical explanations and examples, enabling them to develop a solid foundation of these methods in R and their applications in finance. This book serves as an indispensable resource for finance professionals, analysts, and enthusiasts seeking to harness the power of data-driven decision-making. The book goes beyond just teaching statistical methods in R and incorporates a unique section of informative Monte-Carlo simulations. These Monte-Carlo simulations are uniquely designed to showcase the reader the potential consequences and misleading conclusions that can arise when fundamental model assumptions are violated. Through step-by-step tutorials and realworld cases, readers will learn how and why model assumptions are important to follow. With a focus on practicality, Financial Data Analysis with R: Monte-Carlo Validation equips readers with the skills to construct and validate financial models using R. The Monte-Carlo simulation exercises provide a unique opportunity to understand the methods further, making this book an essential tool for anyone involved in financial analysis, investment strategy, or risk management. Whether you are a seasoned professional or a newcomer to the world of financial analytics, this book serves as a guiding light, empowering you to navigate the landscape of finance with precision and confidence. Key Features: An extensive compilation of commonly used financial data analytics methods from fundamental to advanced levels Learn how to model and analyze financial data with step-by-step illustrations in R and ready-to-use publicly available data Includes Monte-Carlo simulations uniquely designed to showcase the reader the potential consequences and misleading conclusions that arise when fundamental model assumptions are violated Data and computer programs are available for readers to replicate and implement the models and methods themselves
Financial Data Analysis With R
DOWNLOAD
Author : Jenny K. Chen
language : en
Publisher:
Release Date : 2024
Financial Data Analysis With R written by Jenny K. Chen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Business & Economics categories.
"Financial Data Analysis with R: Monte Carlo Validation is a comprehensive exploration of statistical methodologies and their applications in finance. Readers are taken on a journey in each chapter through practical explanations and examples, enabling them to develop a solid foundation of these methods in R and their applications in finance. This book serves as an indispensable resource for finance professionals, analysts, and enthusiasts seeking to harness the power of data-driven decision-making. The book goes beyond just teaching statistical methods in R and incorporates a unique section of informative Monte Carlo simulations. These Monte Carlo simulations are uniquely designed to showcase the reader the potential consequences and misleading conclusions that can arise when fundamental model assumptions are violated. Through step-by-step tutorials and real-world cases, readers will learn how and why model assumptions are important to follow. With a focus on practicality, Financial Data Analysis with R: Monte Carlo Validation equips readers with the skills to construct and validate financial models using R. The Monte Carlo simulation exercises provide a unique opportunity to understand the methods further, making this book an essential tool for anyone involved in financial analysis, investment strategy, or risk management. Whether you are a seasoned professional or a newcomer to the world of financial analytics, this book serves as a guiding light, empowering you to navigate the landscape of finance with precision and confidence"--
An Introduction To Analysis Of Financial Data With R
DOWNLOAD
Author : Ruey S. Tsay
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-21
An Introduction To Analysis Of Financial Data With R written by Ruey S. Tsay and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-21 with Business & Economics categories.
A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.
Processing And Analyzing Financial Data With R
DOWNLOAD
Author : Marcelo S. Perlin
language : en
Publisher: Msperlin
Release Date : 2017-05
Processing And Analyzing Financial Data With R written by Marcelo S. Perlin and has been published by Msperlin this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05 with Business & Economics categories.
This book introduces the reader to the use of R and RStudio as a platform for processing and analyzing financial data. The book covers all necessary knowledge for using R, from its installation in your computer to the organization and development of scripts. For every chapter, the book presents practical and replicable examples of R code, providing context and facilitating the learning process. Based on the material, the reader will learn how to download financial data from local files or the Internet, represent and process it using native objects in R, and create tables and figures to report the results in a technical document. The book is organized based on the author's practical experience in scientific research and includes instructions for using the best R packages for each purpose, such as xtable and texreg for reporting tables, dplyr in data processing, and ggplot2 in creating figures. After showing the capabilities of R in processing financial data, the last chapter presents three complete and reproducible examples of research in Finance. This book is recommended for researchers and students interested in learning how to use R. No prior knowledge of programming or finance is required to take advantage of this book. After finishing, the reader will have enough knowledge to develop their own scripts autonomously, producing academic documents or data analysis for public and private institutions.
Statistical Analysis Of Financial Data In R
DOWNLOAD
Author : René Carmona
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-13
Statistical Analysis Of Financial Data In R written by René Carmona and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-13 with Business & Economics categories.
Although there are many books on mathematical finance, few deal with the statistical aspects of modern data analysis as applied to financial problems. This textbook fills this gap by addressing some of the most challenging issues facing financial engineers. It shows how sophisticated mathematics and modern statistical techniques can be used in the solutions of concrete financial problems. Concerns of risk management are addressed by the study of extreme values, the fitting of distributions with heavy tails, the computation of values at risk (VaR), and other measures of risk. Principal component analysis (PCA), smoothing, and regression techniques are applied to the construction of yield and forward curves. Time series analysis is applied to the study of temperature options and nonparametric estimation. Nonlinear filtering is applied to Monte Carlo simulations, option pricing and earnings prediction. This textbook is intended for undergraduate students majoring in financial engineering, or graduate students in a Master in finance or MBA program. It is sprinkled with practical examples using market data, and each chapter ends with exercises. Practical examples are solved in the R computing environment. They illustrate problems occurring in the commodity, energy and weather markets, as well as the fixed income, equity and credit markets. The examples, experiments and problem sets are based on the library Rsafd developed for the purpose of the text. The book should help quantitative analysts learn and implement advanced statistical concepts. Also, it will be valuable for researchers wishing to gain experience with financial data, implement and test mathematical theories, and address practical issues that are often ignored or underestimated in academic curricula. This is the new, fully-revised edition to the book Statistical Analysis of Financial Data in S-Plus. René Carmona is the Paul M. Wythes '55 Professor of Engineering and Finance at Princeton University in the department of Operations Research and Financial Engineering, and Director of Graduate Studies of the Bendheim Center for Finance. His publications include over one hundred articles and eight books in probability and statistics. He was elected Fellow of the Institute of Mathematical Statistics in 1984, and of the Society for Industrial and Applied Mathematics in 2010. He is on the editorial board of several peer-reviewed journals and book series. Professor Carmona has developed computer programs for teaching statistics and research in signal analysis and financial engineering. He has worked for many years on energy, the commodity markets and more recently in environmental economics, and he is recognized as a leading researcher and expert in these areas.
R Machine Learning By Example
DOWNLOAD
Author : Raghav Bali
language : en
Publisher:
Release Date : 2016
R Machine Learning By Example written by Raghav Bali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Computers categories.
Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfullyAbout This Book* Get to grips with the concepts of machine learning through exciting real-world examples* Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning* Learn to build your own machine learning system with this example-based practical guideWho This Book Is ForIf you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary.What You Will Learn* Utilize the power of R to handle data extraction, manipulation, and exploration techniques* Use R to visualize data spread across multiple dimensions and extract useful features* Explore the underlying mathematical and logical concepts that drive machine learning algorithms* Dive deep into the world of analytics to predict situations correctly* Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action* Write reusable code and build complete machine learning systems from the ground up* Solve interesting real-world problems using machine learning and R as the journey unfolds* Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data scienceIn DetailData science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems.This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems.You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms.Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.Style and approachThe book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.