Transfer Learning For Natural Language Processing
DOWNLOAD
Download Transfer Learning For Natural Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transfer Learning For Natural Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Transfer Learning For Natural Language Processing
DOWNLOAD
Author : Paul Azunre
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-31
Transfer Learning For Natural Language Processing written by Paul Azunre and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-31 with Computers categories.
Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions
Efficient And Scalable Transfer Learning For Natural Language Processing
DOWNLOAD
Author : Kevin Stefan Clark
language : en
Publisher:
Release Date : 2021
Efficient And Scalable Transfer Learning For Natural Language Processing written by Kevin Stefan Clark and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Neural networks work best when trained on large amounts of data, but most labeled datasets in natural language processing (NLP) are small. As a result, neural NLP models often overfit to idiosyncrasies and artifacts in their training data rather than learning generalizable patterns. Transfer learning offers a solution: instead of learning a single task from scratch and in isolation, the model can benefit from the wealth of text on the web or other tasks with rich annotations. This additional data enables the training of bigger, more expressive networks. However, it also dramatically increases the computational cost of training, with recent models taking up to hundreds of GPU years to train. To alleviate this cost, I develop transfer learning methods that learn much more efficiently than previous approaches while remaining highly scalable. First, I present a multi-task learning algorithm based on knowledge distillation that consistently improves over single-task training even when learning many diverse tasks. I next develop Cross-View Training, which revitalizes semi-supervised learning methods from the statistical era of NLP (self-training and co-training) while taking advantage of neural methods. The resulting models outperform pre-trained LSTM language models such as ELMo while training 10x faster. Lastly, I present ELECTRA, a self-supervised pre-training method for transformer networks based on energy-based models. ELECTRA learns 4x--10x faster than previous approaches such as BERT, resulting in excellent performance on natural language understanding tasks both when trained at large scale or even when it is trained on a single GPU.
Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.
Introduction To Transfer Learning
DOWNLOAD
Author : Jindong Wang
language : en
Publisher: Springer Nature
Release Date : 2023-03-30
Introduction To Transfer Learning written by Jindong Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-30 with Computers categories.
Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning. This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.
Real World Natural Language Processing
DOWNLOAD
Author : Masato Hagiwara
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-14
Real World Natural Language Processing written by Masato Hagiwara and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.
Training computers to interpret and generate speech and text is a monumental challenge, and the payoff for reducing labor and improving human/computer interaction is huge! The field of Natural language processing (NLP) is advancing rapidly, with countless new tools and practices. This unique book offers an innovative collection of NLP techniques with applications in machine translation, voice assitants, text generation and more. "Real-world natural language processing" shows you how to build the practical NLP applications that are transforming the way humans and computers work together. Guided by clear explanations of each core NLP topic, you'll create many interesting applications including a sentiment analyzer and a chatbot. Along the way, you'll use Python and open source libraries like AllenNLP and HuggingFace Transformers to speed up your development process.
Transfer Learning And Robustness For Natural Language Processing
DOWNLOAD
Author : Di Jin (Ph.D.)
language : en
Publisher:
Release Date : 2020
Transfer Learning And Robustness For Natural Language Processing written by Di Jin (Ph.D.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
Teaching machines to understand human language is one of the most elusive and long-standing challenges in Natural Language Processing (NLP). Driven by the fast development of deep learning, state-of-the-art NLP models have already achieved human-level performance in various large benchmark datasets, such as SQuAD, SNLI, and RACE. However, when these strong models are deployed to real-world applications, they often show poor generalization capability in two situations: 1. There is only a limited amount of data available for model training; 2. Deployed models may degrade significantly in performance on noisy test data or natural/artificial adversaries. In short, performance degradation on low-resource tasks/datasets and unseen data with distribution shifts imposes great challenges to the reliability of NLP models and prevent them from being massively applied in the wild. This dissertation aims to address these two issues. Towards the first one, we resort to transfer learning to leverage knowledge acquired from related data in order to improve performance on a target low-resource task/dataset. Specifically, we propose different transfer learning methods for three natural language understanding tasks: multi-choice question answering, dialogue state tracking, and sequence labeling, and one natural language generation task: machine translation. These methods are based on four basic transfer learning modalities: multi-task learning, sequential transfer learning, domain adaptation, and cross-lingual transfer. We show experimental results to validate that transferring knowledge from related domains, tasks, and languages can improve the target task/dataset significantly. For the second issue, we propose methods to evaluate the robustness of NLP models on text classification and entailment tasks. On one hand, we reveal that although these models can achieve a high accuracy of over 90%, they still easily crash over paraphrases of original samples by changing only around 10% words to their synonyms. On the other hand, by creating a new challenge set using four adversarial strategies, we find even the best models for the aspect-based sentiment analysis task cannot reliably identify the target aspect and recognize its sentiment accordingly. On the contrary, they are easily confused by distractor aspects. Overall, these findings raise great concerns of robustness of NLP models, which should be enhanced to ensure their long-run stable service.
Deep Learning For Nlp And Speech Recognition
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2019-06-10
Deep Learning For Nlp And Speech Recognition written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-10 with Computers categories.
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Python Based Machine Learning And Deep Learning For Natural Language Processing
DOWNLOAD
Author : Nitin Dixit
language : en
Publisher: Xoffencer international book publication house
Release Date : 2023-02-22
Python Based Machine Learning And Deep Learning For Natural Language Processing written by Nitin Dixit and has been published by Xoffencer international book publication house this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-22 with Computers categories.
NLP is an interdisciplinary topic that integrates computer science, artificial intelligence, and linguistics to create algorithms and models that can process and interpret human language. The purpose of natural language processing (NLP) is to allow computers to comprehend, interpret, and produce human language, which includes speech and text. Chatbots for customer service, sentiment analysis for marketing and social media, named entity recognition for information extraction, machine translation for multilingual communication, and speech recognition for handsfree contact with technology are just a few examples. Advances in machine learning, deep learning, and big data have fueled the development of NLP approaches, which continue to improve to meet the demands of new applications. Python is one of the most popular programming languages for natural language processing (NLP) because of its ease of use, readability, and the availability of strong libraries and tools such as NLTK, spaCy, and Gensim. 1.1 OVERVIEW Natural Language Processing (NLP) is a branch of computer science, artificial intelligence, and computational linguistics dealing with computer-human interaction. NLP's purpose is to enable computers to analyse, comprehend, and produce human language, which includes speech and text. This has resulted in a wide range of applications in various industries, including customer service chatbots, sentiment analysis for marketing and social media, named entity recognition for information extraction, machine translation for multilingual communication, and speech recognition for hands-free technology interaction
Real World Natural Language Processing
DOWNLOAD
Author : Masato Hagiwara
language : en
Publisher: Manning
Release Date : 2021-12-14
Real World Natural Language Processing written by Masato Hagiwara and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.
Real-world Natural Language Processing shows you how to build the practical NLP applications that are transforming the way humans and computers work together. In Real-world Natural Language Processing you will learn how to: Design, develop, and deploy useful NLP applications Create named entity taggers Build machine translation systems Construct language generation systems and chatbots Use advanced NLP concepts such as attention and transfer learning Real-world Natural Language Processing teaches you how to create practical NLP applications without getting bogged down in complex language theory and the mathematics of deep learning. In this engaging book, you’ll explore the core tools and techniques required to build a huge range of powerful NLP apps, including chatbots, language detectors, and text classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Training computers to interpret and generate speech and text is a monumental challenge, and the payoff for reducing labor and improving human/computer interaction is huge! Th e field of Natural Language Processing (NLP) is advancing rapidly, with countless new tools and practices. This unique book offers an innovative collection of NLP techniques with applications in machine translation, voice assistants, text generation, and more. About the book Real-world Natural Language Processing shows you how to build the practical NLP applications that are transforming the way humans and computers work together. Guided by clear explanations of each core NLP topic, you’ll create many interesting applications including a sentiment analyzer and a chatbot. Along the way, you’ll use Python and open source libraries like AllenNLP and HuggingFace Transformers to speed up your development process. What's inside Design, develop, and deploy useful NLP applications Create named entity taggers Build machine translation systems Construct language generation systems and chatbots About the reader For Python programmers. No prior machine learning knowledge assumed. About the author Masato Hagiwara received his computer science PhD from Nagoya University in 2009. He has interned at Google and Microsoft Research, and worked at Duolingo as a Senior Machine Learning Engineer. He now runs his own research and consulting company. Table of Contents PART 1 BASICS 1 Introduction to natural language processing 2 Your first NLP application 3 Word and document embeddings 4 Sentence classification 5 Sequential labeling and language modeling PART 2 ADVANCED MODELS 6 Sequence-to-sequence models 7 Convolutional neural networks 8 Attention and Transformer 9 Transfer learning with pretrained language models PART 3 PUTTING INTO PRODUCTION 10 Best practices in developing NLP applications 11 Deploying and serving NLP applications
Multi Modal Machine Learning An Introduction To Bert Pre Trained Visio Linguistic Models
DOWNLOAD
Author : Johanna Garthe
language : en
Publisher: GRIN Verlag
Release Date : 2023-12-13
Multi Modal Machine Learning An Introduction To Bert Pre Trained Visio Linguistic Models written by Johanna Garthe and has been published by GRIN Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-13 with Computers categories.
Seminar paper from the year 2021 in the subject Computer Sciences - Computational linguistics, grade: 1,3, University of Trier (Computerlinguistik und Digital Humanities), course: Mathematische Modellierung, language: English, abstract: In the field of multi-modal machine learning, where the fusion of various sensory inputs shapes learning paradigms, this paper provides an introduction to BERT-based pre-trained visio-linguistic models by specifically summarizing and analyzing two approaches: ViLBERT and VL-BERT, aiming to highlight and discuss their distinctive characteristics. The paper is structured into five chapters as follows. Chapter 2 lays the fundamental principles by introducing the characteristics of the Transformer encoder and BERT. Chapter 3 presents the selected visual-linguistic models, ViLBERT and VL-BERT. The objective of chapter 4 is to summarize and discuss both models. The paper concludes with an outlook in chapter 5. Transfer learning is a powerful technique in the field of deep learning. At first, a model is pre-trained on a specific task. Then fine-tuning is performed by taking the trained network as the basis of a new purpose-specific model to apply it on a separate task. In this way, transfer learning helps to reduce the need to develop new models for new tasks from scratch and hence saves time for training and verification. Nowadays, there are different such pre-trained models in computer vision, natural language processing (NLP) and recently for visio-linguistic tasks. The pre-trained models presented later in this paper are both based on and use BERT. BERT, which stands for Bidirectional Encoder Representations from Transformers, is a popular training technique for NLP, which is based on the architecture of a Transformer.