Big Data Analytics With R
DOWNLOAD
Download Big Data Analytics With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Analytics With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Big Data Analytics With R
DOWNLOAD
Author : Simon Walkowiak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-07-29
Big Data Analytics With R written by Simon Walkowiak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Computers categories.
Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.
Big Data Analytics With R And Hadoop
DOWNLOAD
Author : Vignesh Prajapati
language : en
Publisher:
Release Date : 2013
Big Data Analytics With R And Hadoop written by Vignesh Prajapati and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Apache Hadoop categories.
Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.
Big Data Analytics With R
DOWNLOAD
Author : Simon Walkowiak
language : en
Publisher: Packt Publishing
Release Date : 2016-07-29
Big Data Analytics With R written by Simon Walkowiak and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Computers categories.
Business Analytics Using R A Practical Approach
DOWNLOAD
Author : Umesh R Hodeghatta
language : en
Publisher: Apress
Release Date : 2016-12-27
Business Analytics Using R A Practical Approach written by Umesh R Hodeghatta and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-27 with Computers categories.
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictiveanalytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.
Practical Big Data Analytics
DOWNLOAD
Author : Nataraj Dasgupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-15
Practical Big Data Analytics written by Nataraj Dasgupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.
Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Using R To Unlock The Value Of Big Data Big Data Analytics With Oracle R Enterprise And Oracle R Connector For Hadoop
DOWNLOAD
Author : Mark Hornick
language : en
Publisher: McGraw Hill Professional
Release Date : 2013-06-27
Using R To Unlock The Value Of Big Data Big Data Analytics With Oracle R Enterprise And Oracle R Connector For Hadoop written by Mark Hornick and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-27 with Computers categories.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The Oracle Press Guide to Big Data Analytics using R Cowritten by members of the Big Data team at Oracle, this Oracle Press book focuses on analyzing data with R while making it scalable using Oracle’s R technologies. Using R to Unlock the Value of Big Data provides an introduction to open source R and describes issues with traditional R and database interaction. The book then offers in-depth coverage of Oracle’s strategic R offerings: Oracle R Enterprise, Oracle R Distribution, ROracle, and Oracle R Connector for Hadoop. You can practice your new skills using the end-of-chapter exercises.
Advanced Analytics With R And Tableau
DOWNLOAD
Author : Jen Stirrup
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-22
Advanced Analytics With R And Tableau written by Jen Stirrup and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-22 with Computers categories.
Leverage the power of advanced analytics and predictive modeling in Tableau using the statistical powers of R About This Book A comprehensive guide that will bring out the creativity in you to visualize the results of complex calculations using Tableau and R Combine Tableau analytics and visualization with the power of R using this step-by-step guide Wondering how R can be used with Tableau? This book is your one-stop solution. Who This Book Is For This book will appeal to Tableau users who want to go beyond the Tableau interface and deploy the full potential of Tableau, by using R to perform advanced analytics with Tableau. A basic familiarity with R is useful but not compulsory, as the book will start off with concrete examples of R and will move quickly into more advanced spheres of analytics using online data sources to support hands-on learning. Those R developers who want to integrate R in Tableau will also benefit from this book. What You Will Learn Integrate Tableau's analytics with the industry-standard, statistical prowess of R. Make R function calls in Tableau, and visualize R functions with Tableau using RServe. Use the CRISP-DM methodology to create a roadmap for analytics investigations. Implement various supervised and unsupervised learning algorithms in R to return values to Tableau. Make quick, cogent, and data-driven decisions for your business using advanced analytical techniques such as forecasting, predictions, association rules, clustering, classification, and other advanced Tableau/R calculated field functions. In Detail Tableau and R offer accessible analytics by allowing a combination of easy-to-use data visualization along with industry-standard, robust statistical computation. Moving from data visualization into deeper, more advanced analytics? This book will intensify data skills for data viz-savvy users who want to move into analytics and data science in order to enhance their businesses by harnessing the analytical power of R and the stunning visualization capabilities of Tableau. Readers will come across a wide range of machine learning algorithms and learn how descriptive, prescriptive, predictive, and visually appealing analytical solutions can be designed with R and Tableau. In order to maximize learning, hands-on examples will ease the transition from being a data-savvy user to a data analyst using sound statistical tools to perform advanced analytics. By the end of this book, you will get to grips with advanced calculations in R and Tableau for analytics and prediction with the help of use cases and hands-on examples. Style and approach Tableau (uniquely) offers excellent visualization combined with advanced analytics; R is at the pinnacle of statistical computational languages. When you want to move from one view of data to another, backed up by complex computations, the combination of R and Tableau makes the perfect solution. This example-rich guide will teach you how to combine these two to perform advanced analytics by integrating Tableau with R and create beautiful data visualizations.
Beginning Data Science In R
DOWNLOAD
Author : Thomas Mailund
language : en
Publisher: Apress
Release Date : 2017-03-09
Beginning Data Science In R written by Thomas Mailund and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-09 with Computers categories.
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming. What You Will Learn Perform data science and analytics using statistics and the R programming language Visualize and explore data, including working with large data sets found in big data Build an R package Test and check your code Practice version control Profile and optimize your code Who This Book Is For Those with some data science or analytics background, but not necessarily experience with the R programming language.
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-06-08
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-08 with Computers categories.
Cover -- Copyright -- Table of Contents -- Preface -- What You Will Learn -- How This Book Is Organized -- What You Won't Learn -- Big Data -- Python, Julia, and Friends -- Nonrectangular Data -- Hypothesis Confirmation -- Prerequisites -- R -- RStudio -- The Tidyverse -- Other Packages -- Running R Code -- Getting Help and Learning More -- Acknowledgments -- Online Version -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Part I. Explore -- Chapter 1. Data Visualization with ggplot2 -- Introduction -- Prerequisites -- First Steps -- The mpg Data Frame -- Creating a ggplot -- A Graphing Template -- Exercises -- Aesthetic Mappings -- Exercises -- Common Problems -- Facets -- Exercises -- Geometric Objects -- Exercises -- Statistical Transformations -- Exercises -- Position Adjustments -- Exercises -- Coordinate Systems -- Exercises -- The Layered Grammar of Graphics -- Chapter 2. Workflow: Basics -- Coding Basics -- What's in a Name? -- Calling Functions -- Exercises -- Chapter 3. Data Transformation with dplyr -- Introduction -- Prerequisites -- nycflights13 -- dplyr Basics -- Filter Rows with filter() -- Comparisons -- Logical Operators -- Missing Values -- Exercises -- Arrange Rows with arrange() -- Exercises -- Select Columns with select() -- Exercises -- Add New Variables with mutate() -- Useful Creation Functions -- Exercises -- Grouped Summaries with summarize() -- Combining Multiple Operations with the Pipe -- Missing Values -- Counts -- Useful Summary Functions -- Grouping by Multiple Variables -- Ungrouping -- Exercises -- Grouped Mutates (and Filters) -- Exercises -- Chapter 4. Workflow: Scripts -- Running Code -- RStudio Diagnostics -- Exercises -- Chapter 5. Exploratory Data Analysis -- Introduction -- Prerequisites -- Questions -- Variation -- Visualizing Distributions.
R Programming An Approach To Data Analytics
DOWNLOAD
Author : G. Sudhamathy, C. Jothi Venkateswaran
language : en
Publisher: MJP Publisher
Release Date : 2019-06-03
R Programming An Approach To Data Analytics written by G. Sudhamathy, C. Jothi Venkateswaran and has been published by MJP Publisher this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-03 with Computers categories.
Chapter 1 - Basics of R, Chapter 2 - Data Types in R , Chapter 3 - Data Preparation. Chapter 4 - Graphics using R, Chapter 5 - Statistical Analysis Using R, Chapter 6 - Data Mining Using R, Chapter 7 - Case Studies. Huge volumes of data are being generated by many sources like commercial enterprises, scientific domains and general public daily. According to a recent research, data production will be 44 times greater in 2020 than it was in 2010. Data being a vital resource for business organizations and other domains like education, health, manufacturing etc., its management and analysis is becoming increasingly important. This data, due to its volume, variety and velocity, often referred to as Big Data, also includes highly unstructured data in the form of textual documents, web pages, graphical information and social media comments. Since Big Data is characterised by massive sample sizes, high dimensionality and intrinsic heterogeneity, traditional approaches to data management, visualisation and analytics are no longer satisfactorily applicable. There is therefore an urgent need for newer tools, better frameworks and workable methodologies for such data to be appropriately categorised, logically segmented, efficiently analysed and securely managed. This requirement has resulted in an emerging new discipline of Data Science that is now gaining much attention with researchers and practitioners in the field of Data Analytics.