R Programming An Approach To Data Analytics
DOWNLOAD
Download R Programming An Approach To Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Programming An Approach To Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
R Programming An Approach To Data Analytics
DOWNLOAD
Author : G. Sudhamathy, C. Jothi Venkateswaran
language : en
Publisher: MJP Publisher
Release Date : 2019-06-03
R Programming An Approach To Data Analytics written by G. Sudhamathy, C. Jothi Venkateswaran and has been published by MJP Publisher this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-03 with Computers categories.
Chapter 1 - Basics of R, Chapter 2 - Data Types in R , Chapter 3 - Data Preparation. Chapter 4 - Graphics using R, Chapter 5 - Statistical Analysis Using R, Chapter 6 - Data Mining Using R, Chapter 7 - Case Studies. Huge volumes of data are being generated by many sources like commercial enterprises, scientific domains and general public daily. According to a recent research, data production will be 44 times greater in 2020 than it was in 2010. Data being a vital resource for business organizations and other domains like education, health, manufacturing etc., its management and analysis is becoming increasingly important. This data, due to its volume, variety and velocity, often referred to as Big Data, also includes highly unstructured data in the form of textual documents, web pages, graphical information and social media comments. Since Big Data is characterised by massive sample sizes, high dimensionality and intrinsic heterogeneity, traditional approaches to data management, visualisation and analytics are no longer satisfactorily applicable. There is therefore an urgent need for newer tools, better frameworks and workable methodologies for such data to be appropriately categorised, logically segmented, efficiently analysed and securely managed. This requirement has resulted in an emerging new discipline of Data Science that is now gaining much attention with researchers and practitioners in the field of Data Analytics.
Business Analytics Using R A Practical Approach
DOWNLOAD
Author : Umesh R Hodeghatta
language : en
Publisher: Apress
Release Date : 2016-12-27
Business Analytics Using R A Practical Approach written by Umesh R Hodeghatta and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-27 with Computers categories.
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictiveanalytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.
Beginner S Guide For Data Analysis Using R Programming
DOWNLOAD
Author : Jeeva Jose
language : en
Publisher: KHANNA PUBLISHING HOUSE
Release Date :
Beginner S Guide For Data Analysis Using R Programming written by Jeeva Jose and has been published by KHANNA PUBLISHING HOUSE this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
R programming is an efficient tool for statistical analysis of data. Data science has become critical to each field and the popularity of R is skyrocketing. Organization as large and diverse as Google, Facebook, Microsoft, Bank of America, Ford Motor Company, Mozilla, Thomas Cook, The New York Times, The National Weather Service, Twitter, ANZ Bank, Uber, Airbnb etc . have turned to R for reporting, analyzing and visualization of data, this book is for students and professionals of Mathematics, Statistics, Physics, Chemistry, Biology, Social Science and Medicine, Business, Engineering, Software, Information Technology, Sales, Bio Informatics, Pharmacy and any one, where data needs to be analyzed and represented graphically.
R In Action Third Edition
DOWNLOAD
Author : Robert I. Kabacoff
language : en
Publisher: Simon and Schuster
Release Date : 2022-05-03
R In Action Third Edition written by Robert I. Kabacoff and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-03 with Computers categories.
'R in Action' presents both the R system and the use cases that make it such a compelling package for business developers. The book begins by introducing the R language, and then moves on to various examples illustrating R's features.
Data Analysis With R
DOWNLOAD
Author : Tony Fischetti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-12-22
Data Analysis With R written by Tony Fischetti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-22 with Computers categories.
Load, wrangle, and analyze your data using the world's most powerful statistical programming language About This Book Load, manipulate and analyze data from different sources Gain a deeper understanding of fundamentals of applied statistics A practical guide to performing data analysis in practice Who This Book Is For Whether you are learning data analysis for the first time, or you want to deepen the understanding you already have, this book will prove to an invaluable resource. If you are looking for a book to bring you all the way through the fundamentals to the application of advanced and effective analytics methodologies, and have some prior programming experience and a mathematical background, then this is for you. What You Will Learn Navigate the R environment Describe and visualize the behavior of data and relationships between data Gain a thorough understanding of statistical reasoning and sampling Employ hypothesis tests to draw inferences from your data Learn Bayesian methods for estimating parameters Perform regression to predict continuous variables Apply powerful classification methods to predict categorical data Handle missing data gracefully using multiple imputation Identify and manage problematic data points Employ parallelization and Rcpp to scale your analyses to larger data Put best practices into effect to make your job easier and facilitate reproducibility In Detail Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. With over 7,000 user contributed packages, it's easy to find support for the latest and greatest algorithms and techniques. Starting with the basics of R and statistical reasoning, Data Analysis with R dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst. Style and approach Learn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach.
Practical Machine Learning In R
DOWNLOAD
Author : Fred Nwanganga
language : en
Publisher: John Wiley & Sons
Release Date : 2020-05-27
Practical Machine Learning In R written by Fred Nwanganga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-27 with Computers categories.
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.
R Programming
DOWNLOAD
Author : Ajit Singh
language : en
Publisher:
Release Date : 2020-07-23
R Programming written by Ajit Singh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-23 with categories.
Data science is an exciting discipline that allows you to turn raw data into understanding, insight, and knowledge. The goal of "R for Data Science" is to help you learn the most important tools in R that will allow you to do data science. After reading this book, you'll have the tools to tackle a wide variety of data science challenges, using the best parts of R. This book will teach you how to program in R. You'll go from loading data to writing your own functions (which will outperform the functions of other R users).This is an understandable approach to learning R. Visualizing and modeling data are complicated skills that require a programmer's full attention. It takes expertise, judgement, and focus to extract reliable insights from a data set. This book proudly focuses on small, in-memory datasets. This is the right place to start because you can't tackle big data unless you have experience with small data. I think R is a great place to start your data science journey because it is an environment designed from the ground up to support data science. R is not just a programming language, but it is also an interactive environment for doing data science. Simply In Depth....
Knowledge Organization
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1996
Knowledge Organization written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Classification categories.
Current Index To Statistics Applications Methods And Theory
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1985
Current Index To Statistics Applications Methods And Theory written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985 with Mathematical statistics categories.
The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Data Analytics With R
DOWNLOAD
Author : Viswa Viswanathan
language : en
Publisher:
Release Date : 2014-05-30
Data Analytics With R written by Viswa Viswanathan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-30 with R (Computer program language) categories.
Today we all have access to a lot of data. Even more crucially, we also have easy access -- through our personal computers and powerful free software packages -- to the means to process the corpus of data and extract intelligence from it. Quite needlessly though, the necessary knowledge skills remain the exclusive preserve of a few, which this book sets out to change. Although most data analytics techniques have a mathematical basis, people with a grasp of high school mathematics can gain a deep intuitive understanding of the underlying techniques and apply them correctly and effectively. To make this possible, the book: Focuses on intuitive and correct explanations with examples, while avoiding deep mathematics; Provides numerous examples, tables and figures (almost 170 figures and 105 tables), to help readers grasp the concepts and techniques; Introduces the R statistical programming environment and provides step-by-step guidance to learn R and apply it to the techniques covered; After working through the book readers will be able to independently apply the techniques covered to their own data. After completing the book, readers would have mastered an important subset of the R language. Recognizing that people master new topics only by doing, the book provides many instructive hands-on activities with detailed guidance and explanations. Rather than just providing the steps in the form of "what" to do, the book also explains "why?" All the data files needed to work through the hands-on activities and assignments are available as free downloads from the book's web site. To help readers master the concepts the book includes many review questions and hands-on assignments. The book includes solutions to all of these, with detailed explanations. To shield those who are new to any form of computer programming, the book comes with many convenience functions that can serve to automate what might otherwise be confusing procedures. The book covers the following topics: Quick introduction to R programming -- assumes no prior background in R; Important data analytics concepts; Exploratory data analysis and graphing with R; Affinity analysis; Classification techniques like K nearest neighbors, Naive Bayes and Classification trees; Regression techniques like simple and multiple linear regression; K nearest neighbors for regression and regression trees; Time series analysis; and Data reduction techniques like Principal Component analysis (PCA) and cluster analysis (k-means clustering) After completing the book, readers would have had a huge amount of hands-on experience, with a great intuitive understanding of the underlying theory.