Download Beginning Apache Spark 2 - eBooks (PDF)

Beginning Apache Spark 2


Beginning Apache Spark 2
DOWNLOAD

Download Beginning Apache Spark 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning Apache Spark 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Beginning Apache Spark 2


Beginning Apache Spark 2
DOWNLOAD
Author : Hien Luu
language : en
Publisher: Apress
Release Date : 2018-08-16

Beginning Apache Spark 2 written by Hien Luu and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-16 with Computers categories.


Develop applications for the big data landscape with Spark and Hadoop. This book also explains the role of Spark in developing scalable machine learning and analytics applications with Cloud technologies. Beginning Apache Spark 2 gives you an introduction to Apache Spark and shows you how to work with it. Along the way, you’ll discover resilient distributed datasets (RDDs); use Spark SQL for structured data; and learn stream processing and build real-time applications with Spark Structured Streaming. Furthermore, you’ll learn the fundamentals of Spark ML for machine learning and much more. After you read this book, you will have the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications. What You Will Learn Understand Spark unified data processing platform Howto run Spark in Spark Shell or Databricks Use and manipulate RDDs Deal with structured data using Spark SQL through its operations and advanced functions Build real-time applications using Spark Structured Streaming Develop intelligent applications with the Spark Machine Learning library Who This Book Is For Programmers and developers active in big data, Hadoop, and Java but who are new to the Apache Spark platform.



Resilience In The Digital Age


Resilience In The Digital Age
DOWNLOAD
Author : Fred S. Roberts
language : en
Publisher: Springer Nature
Release Date : 2021-02-19

Resilience In The Digital Age written by Fred S. Roberts and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-19 with Computers categories.


The growth of a global digital economy has enabled rapid communication, instantaneous movement of funds, and availability of vast amounts of information. With this come challenges such as the vulnerability of digitalized sociotechnological systems (STSs) to destructive events (earthquakes, disease events, terrorist attacks). Similar issues arise for disruptions to complex linked natural and social systems (from changing climates, evolving urban environments, etc.). This book explores new approaches to the resilience of sociotechnological and natural-social systems in a digital world of big data, extraordinary computing capacity, and rapidly developing methods of Artificial Intelligence. Most of the book’s papers were presented at the Workshop on Big Data and Systems Analysis held at the International Institute for Applied Systems Analysis in Laxenburg, Austria in February, 2020. Their authors are associated with the Task Group “Advanced mathematical tools for data-driven applied systems analysis” created and sponsored by CODATA in November, 2018. The world-wide COVID-19 pandemic illustrates the vulnerability of our healthcare systems, supply chains, and social infrastructure, and confronts our notions of what makes a system resilient. We have found that use of AI tools can lead to problems when unexpected events occur. On the other hand, the vast amounts of data available from sensors, satellite images, social media, etc. can also be used to make modern systems more resilient. Papers in the book explore disruptions of complex networks and algorithms that minimize departure from a previous state after a disruption; introduce a multigrammatical framework for the technological and resource bases of today’s large-scale industrial systems and the transformations resulting from disruptive events; and explain how robotics can enhance pre-emptive measures or post-disaster responses to increase resiliency. Other papers explore current directions in data processing and handling and principles of FAIRness in data; how the availability of large amounts of data can aid in the development of resilient STSs and challenges to overcome in doing so. The book also addresses interactions between humans and built environments, focusing on how AI can inform today’s smart and connected buildings and make them resilient, and how AI tools can increase resilience to misinformation and its dissemination.



Apache Spark 2 For Beginners


Apache Spark 2 For Beginners
DOWNLOAD
Author : Rajanarayanan Thottuvaikkatumana
language : en
Publisher:
Release Date : 2016

Apache Spark 2 For Beginners written by Rajanarayanan Thottuvaikkatumana and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


"Spark is one of the most widely-used large-scale data processing engines and runs extremely fast. It is a framework that has tools that are equally useful for application developers as well as data scientists.This book starts with the fundamentals of Spark 2 and covers the core data processing framework and API, installation, and application development setup. Then the Spark programming model is introduced through real-world examples followed by Spark SQL programming with DataFrames. An introduction to SparkR is covered next. Later, we cover the charting and plotting features of Python in conjunction with Spark data processing. After that, we take a look at Spark's stream processing, machine learning, and graph processing libraries. The last chapter combines all the skills you learned from the preceding chapters to develop a real-world Spark application.By the end of this video, you will be able to consolidate data processing, stream processing, machine learning, and graph processing into one unified and highly interoperable framework with a uniform API using Scala or Python."--Resource description page.



Beginning Apache Spark 3


Beginning Apache Spark 3
DOWNLOAD
Author : Hien Luu
language : en
Publisher: Apress
Release Date : 2021-10-23

Beginning Apache Spark 3 written by Hien Luu and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-23 with Computers categories.


Take a journey toward discovering, learning, and using Apache Spark 3.0. In this book, you will gain expertise on the powerful and efficient distributed data processing engine inside of Apache Spark; its user-friendly, comprehensive, and flexible programming model for processing data in batch and streaming; and the scalable machine learning algorithms and practical utilities to build machine learning applications. Beginning Apache Spark 3 begins by explaining different ways of interacting with Apache Spark, such as Spark Concepts and Architecture, and Spark Unified Stack. Next, it offers an overview of Spark SQL before moving on to its advanced features. It covers tips and techniques for dealing with performance issues, followed by an overview of the structured streaming processing engine. It concludes with a demonstration of how to develop machine learning applications using Spark MLlib and how to manage the machine learning development lifecycle. This book is packed with practical examples and code snippets to help you master concepts and features immediately after they are covered in each section. After reading this book, you will have the knowledge required to build your own big data pipelines, applications, and machine learning applications. What You Will Learn Master the Spark unified data analytics engine and its various components Work in tandem to provide a scalable, fault tolerant and performant data processing engine Leverage the user-friendly and flexible programming model to perform simple to complex data analytics using dataframe and Spark SQL Develop machine learning applications using Spark MLlib Manage the machine learning development lifecycle using MLflow Who This Book Is For Data scientists, data engineers and software developers.



Apache Spark 2 X Cookbook


Apache Spark 2 X Cookbook
DOWNLOAD
Author : Rishi Yadav
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-05-31

Apache Spark 2 X Cookbook written by Rishi Yadav and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-31 with Computers categories.


Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.



Apache Spark 2 X For Java Developers


Apache Spark 2 X For Java Developers
DOWNLOAD
Author : Sourav Gulati
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-26

Apache Spark 2 X For Java Developers written by Sourav Gulati and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-26 with Computers categories.


Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.



Apache Spark 2 X Cookbook


Apache Spark 2 X Cookbook
DOWNLOAD
Author : Rishi Yadav
language : en
Publisher:
Release Date : 2017-05-31

Apache Spark 2 X Cookbook written by Rishi Yadav and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-31 with Computers categories.


Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its librariesAbout This Book* This book contains recipes on how to use Apache Spark as a unified compute engine* Cover how to connect various source systems to Apache Spark* Covers various parts of machine learning including supervised/unsupervised learning & recommendation enginesWho This Book Is ForThis book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language.What You Will Learn* Install and configure Apache Spark with various cluster managers & on AWS* Set up a development environment for Apache Spark including Databricks Cloud notebook* Find out how to operate on data in Spark with schemas* Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming* Master supervised learning and unsupervised learning using MLlib* Build a recommendation engine using MLlib* Graph processing using GraphX and GraphFrames libraries* Develop a set of common applications or project types, and solutions that solve complex big data problemsIn DetailWhile Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data.Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark.Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting.Style and approachThis book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.



Build Your Own Cybersecurity Testing Lab Low Cost Solutions For Testing In Virtual And Cloud Based Environments


Build Your Own Cybersecurity Testing Lab Low Cost Solutions For Testing In Virtual And Cloud Based Environments
DOWNLOAD
Author : Ric Messier
language : en
Publisher: McGraw Hill Professional
Release Date : 2020-02-28

Build Your Own Cybersecurity Testing Lab Low Cost Solutions For Testing In Virtual And Cloud Based Environments written by Ric Messier and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.


Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Manage your own robust, inexpensive cybersecurity testing environment This hands-on guide shows clearly how to administer an effective cybersecurity testing lab using affordable technologies and cloud resources. Build Your Own Cybersecurity Testing Lab: Low-cost Solutions for Testing in Virtual and Cloud-based Environments fully explains multiple techniques for developing lab systems, including the use of Infrastructure-as-Code, meaning you can write programs to create your labs quickly, without manual steps that could lead to costly and frustrating mistakes. Written by a seasoned IT security professional and academic, this book offers complete coverage of cloud and virtual environments as well as physical networks and automation. Included with the book is access to videos that demystify difficult concepts. Inside, you will discover how to: • Gather network requirements and build your cybersecurity testing lab • Set up virtual machines and physical systems from inexpensive components • Select and configure the necessary operating systems • Gain remote access through SSH, RDP, and other remote access protocols • Efficiently isolate subnets with physical switches, routers, and VLANs • Analyze the vulnerabilities and challenges of cloud-based infrastructures • Handle implementation of systems on Amazon Web Services, Microsoft Azure, and Google Cloud Engine • Maximize consistency and repeatability using the latest automation tools



Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher:
Release Date : 2017-07-20

Mastering Apache Spark 2 X written by Romeo Kienzler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-20 with Computers categories.


Advanced analytics on your Big Data with latest Apache Spark 2.xAbout This Book* An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities.* Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark.* Master the art of real-time processing with the help of Apache Spark 2.xWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn* Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J* Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming* Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames* Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud* Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames* Learn how specific parameter settings affect overall performance of an Apache Spark cluster* Leverage Scala, R and python for your data science projectsIn DetailApache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform.The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x.You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets.You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Apache Spark 2 X Machine Learning Cookbook


Apache Spark 2 X Machine Learning Cookbook
DOWNLOAD
Author : Siamak Amirghodsi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-22

Apache Spark 2 X Machine Learning Cookbook written by Siamak Amirghodsi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-22 with Computers categories.


Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.