Download Mastering Apache Spark 2 X - eBooks (PDF)

Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD

Download Mastering Apache Spark 2 X PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Apache Spark 2 X book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-26

Mastering Apache Spark 2 X written by Romeo Kienzler and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-26 with Computers categories.


Advanced analytics on your Big Data with latest Apache Spark 2.x About This Book An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities. Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark. Master the art of real-time processing with the help of Apache Spark 2.x Who This Book Is For If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected. What You Will Learn Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames Learn how specific parameter settings affect overall performance of an Apache Spark cluster Leverage Scala, R and python for your data science projects In Detail Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform. The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x. You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets. You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks. Style and approach This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-26

Mastering Apache Spark 2 X written by Romeo Kienzler and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-26 with Computers categories.


Advanced analytics on your Big Data with latest Apache Spark 2.x About This Book An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities. Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark. Master the art of real-time processing with the help of Apache Spark 2.x Who This Book Is For If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected. What You Will Learn Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames Learn how specific parameter settings affect overall performance of an Apache Spark cluster Leverage Scala, R and python for your data science projects In Detail Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform. The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x. You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets. You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks. Style and approach This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher:
Release Date : 2017-07-20

Mastering Apache Spark 2 X written by Romeo Kienzler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-20 with Computers categories.


Advanced analytics on your Big Data with latest Apache Spark 2.xAbout This Book* An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities.* Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark.* Master the art of real-time processing with the help of Apache Spark 2.xWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn* Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J* Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming* Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames* Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud* Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames* Learn how specific parameter settings affect overall performance of an Apache Spark cluster* Leverage Scala, R and python for your data science projectsIn DetailApache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform.The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x.You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets.You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Mastering Apache Spark


Mastering Apache Spark
DOWNLOAD
Author : Mike Frampton
language : en
Publisher:
Release Date : 2015

Mastering Apache Spark written by Mike Frampton and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.


Gain expertise in processing and storing data by using advanced techniques with Apache SparkAbout This Book- Explore the integration of Apache Spark with third party applications such as H20, Databricks and Titan- Evaluate how Cassandra and Hbase can be used for storage- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalitiesWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn- Extend the tools available for processing and storage- Examine clustering and classification using MLlib- Discover Spark stream processing via Flume, HDFS- Create a schema in Spark SQL, and learn how a Spark schema can be populated with data- Study Spark based graph processing using Spark GraphX- Combine Spark with H20 and deep learning and learn why it is useful- Evaluate how graph storage works with Apache Spark, Titan, HBase and Cassandra- Use Apache Spark in the cloud with Databricks and AWSIn DetailApache Spark is an in-memory cluster based parallel processing system that provides a wide range of functionality like graph processing, machine learning, stream processing and SQL. It operates at unprecedented speeds, is easy to use and offers a rich set of data transformations.This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand Spark functionality. The book commences with an overview of the Spark eco-system. You will learn how to use MLlib to create a fully working neural net for handwriting recognition. You will then discover how stream processing can be tuned for optimal performance and to ensure parallel processing. The book extends to show how to incorporate H20 for machine learning, Titan for graph based storage, Databricks for cloud-based Spark. Intermediate Scala based code examples are provided for Apache Spark module processing in a CentOS Linux and Databricks cloud environment.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Dr. N. Bharathi, SVNN Mahesh Duriseati, Dr. Divvela Srinivasa Rao, J.Rohini
language : en
Publisher: BR Publications
Release Date : 2025-10-27

Big Data Analytics written by Dr. N. Bharathi, SVNN Mahesh Duriseati, Dr. Divvela Srinivasa Rao, J.Rohini and has been published by BR Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-27 with Computers categories.


Big Data Analytics is the process of examining large, complex, and rapidly growing datasets—called big data—to uncover hidden patterns, trends, correlations, and useful insights. These datasets are too large or fast-changing to be processed using traditional data analysis tools. Big Data Analytics uses advanced techniques such as machine learning, data mining, statistical analysis, and predictive modeling to extract meaningful information that supports decision-making.



Aeta 2017 Recent Advances In Electrical Engineering And Related Sciences Theory And Application


Aeta 2017 Recent Advances In Electrical Engineering And Related Sciences Theory And Application
DOWNLOAD
Author : Vo Hoang Duy
language : en
Publisher: Springer
Release Date : 2017-11-10

Aeta 2017 Recent Advances In Electrical Engineering And Related Sciences Theory And Application written by Vo Hoang Duy and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-10 with Technology & Engineering categories.


This proceedings book gathers papers presented at the 4th International Conference on Advanced Engineering Theory and Applications 2017 (AETA 2017), held on 7–9 December 2017 at Ton Duc Thang University, Ho Chi Minh City, Vietnam. It presents selected papers on 13 topical areas, including robotics, control systems, telecommunications, computer science and more. All selected papers represent interesting ideas and collectively provide a state-of-the-art overview. Readers will find intriguing papers on the design and implementation of control algorithms for aerial and underwater robots, for mechanical systems, efficient protocols for vehicular ad hoc networks, motor control, image and signal processing, energy saving, optimization methods in various fields of electrical engineering, and others. The book also offers a valuable resource for practitioners who want to apply the content discussed to solve real-life problems in their challenging applications. It also addresses common and related subjects in modern electric, electronic and related technologies. As such, it will benefit all scientists and engineers working in the above-mentioned fields of application.



Business Analytics


Business Analytics
DOWNLOAD
Author : Thomas W. Jackson
language : en
Publisher: Bloomsbury Publishing
Release Date : 2018-09-21

Business Analytics written by Thomas W. Jackson and has been published by Bloomsbury Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-21 with Business & Economics categories.


This innovative new textbook, co-authored by an established academic and a leading practitioner, is the first to bring together issues of cloud computing, business intelligence and big data analytics in order to explore how organisations use cloud technology to analyse data and make decisions. In addition to offering an up-to-date exploration of key issues relating to data privacy and ethics, information governance, and the future of analytics, the text describes the options available in deploying analytic solutions to the cloud and draws on real-world, international examples from companies such as Rolls Royce, Lego, Volkswagen and Samsung. Combining academic and practitioner perspectives that are crucial to the understanding of this growing field, Business Analytics acts an ideal core text for undergraduate, postgraduate and MBA modules on Big Data, Business and Data Analytics, and Business Intelligence, as well as functioning as a supplementary text for modules in Marketing Analytics. The book is also an invaluable resource for practitioners and will quickly enable the next generation of 'Information Builders' within organisations to understand innovative cloud based-analytic solutions.



Apache Spark 2


Apache Spark 2
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher:
Release Date : 2018-12-18

Apache Spark 2 written by Romeo Kienzler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-18 with Computers categories.


Build efficient data flow and machine learning programs with this flexible, multi-functional open-source cluster-computing framework Key Features Master the art of real-time big data processing and machine learning Explore a wide range of use-cases to analyze large data Discover ways to optimize your work by using many features of Spark 2.x and Scala Book Description Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: Mastering Apache Spark 2.x by Romeo Kienzler Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook What you will learn Get to grips with all the features of Apache Spark 2.x Perform highly optimized real-time big data processing Use ML and DL techniques with Spark MLlib and third-party tools Analyze structured and unstructured data using SparkSQL and GraphX Understand tuning, debugging, and monitoring of big data applications Build scalable and fault-tolerant streaming applications Develop scalable recommendation engines Who this book is for If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.



Apache Spark 2 X Cookbook


Apache Spark 2 X Cookbook
DOWNLOAD
Author : Rishi Yadav
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-05-31

Apache Spark 2 X Cookbook written by Rishi Yadav and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-31 with Computers categories.


Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.



Apache Spark 2 Data Processing And Real Time Analytics


Apache Spark 2 Data Processing And Real Time Analytics
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-21

Apache Spark 2 Data Processing And Real Time Analytics written by Romeo Kienzler and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-21 with Computers categories.


Build efficient data flow and machine learning programs with this flexible, multi-functional open-source cluster-computing framework Key FeaturesMaster the art of real-time big data processing and machine learning Explore a wide range of use-cases to analyze large data Discover ways to optimize your work by using many features of Spark 2.x and ScalaBook Description Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: Mastering Apache Spark 2.x by Romeo KienzlerScala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar AllaApache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbookWhat you will learnGet to grips with all the features of Apache Spark 2.xPerform highly optimized real-time big data processing Use ML and DL techniques with Spark MLlib and third-party toolsAnalyze structured and unstructured data using SparkSQL and GraphXUnderstand tuning, debugging, and monitoring of big data applications Build scalable and fault-tolerant streaming applications Develop scalable recommendation enginesWho this book is for If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.