Hands On Natural Language Processing With Python
DOWNLOAD
Download Hands On Natural Language Processing With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Natural Language Processing With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Natural Language Processing With Python
DOWNLOAD
Author : Rajesh Arumugam
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-18
Hands On Natural Language Processing With Python written by Rajesh Arumugam and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-18 with Computers categories.
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Natural Language Processing Crash Course For Beginners
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-08-04
Natural Language Processing Crash Course For Beginners written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with categories.
Natural Language Processing Crash Course for Beginners Artificial Intelligence (AI) isn't the latest fad! The reason is AI has been around since 1956, and its relevance is evident in every field today. Artificial Intelligence incorporates human intelligence into machines. Machine Learning (ML), a branch of AI, enables machines to learn by themselves. Deep Learning (DL), a subfield of Machine Learning, uses algorithms that are inspired by the functioning of the human brain. Natural Language Processing (NLP) combines computational linguistics and Artificial Intelligence, enabling computers and humans to communicate seamlessly. And NLP is immensely powerful and impactful as every business is looking to integrate it into their day to day dealings. How Is This Book Different? This book by AI Publishing is carefully crafted, giving equal importance to the theoretical concepts as well as the practical aspects of natural language processing. In each chapter of the second half of the book, the theoretical concepts of different types of deep learning and NLP techniques have been covered in-depth, followed by practical examples. You will learn how to apply different NLP techniques using the TensorFlow and Keras libraries for Python. Each chapter contains exercises that are designed to evaluate your understanding of the concepts covered in that chapter. Also, in the Resources section of each chapter, you can access the Python notebook. The author has also compiled a list of hands-on NLP projects and competitions that you can try on your own. The main benefit of purchasing this book is you get immediate access to all the extra learning material presented with this book--Python codes, exercises, PDFs, and references--on the publisher's website without having to spend an extra cent. You can download the datasets used in this book at runtime, or you can access them in the Resources/Datasets folder. The author holds your hand through everything. He provides you a step by step explanation of the installation of the software needed to implement the various NLP techniques in this book. You can start experimenting with the practical aspects of NLP right from the beginning. Even if you are new to Python, you'll find the ultra-short course on Python programming language in the second chapter immensely helpful. You get all the codes and datasets with this book. So, if you have access to a computer with the internet, you can get started. The topics covered include: What is Natural Language Processing? Environment Setup and Python Crash Course Introduction to Deep Learning Text Cleaning and Manipulation Common NLP Tasks Importing Text Data from Various Sources Word Embeddings: Converting Words to Numbers IMDB Movies Sentimental Analysis Ham and Spam Message Classification Text Summarization and Topic Modeling Text Classification with Deep Learning Text Translation Using Seq2Seq Model State of the Art NLP with BERT Transformers Hands-on NLP Projects/Articles for Practice Exercise Solutions Click the BUY button and download the book now to start your Natural Language Processing journey.
Hands On Python Natural Language Processing
DOWNLOAD
Author : Aman Kedia
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-06-26
Hands On Python Natural Language Processing written by Aman Kedia and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-26 with Computers categories.
Get well-versed with traditional as well as modern natural language processing concepts and techniques Key FeaturesPerform various NLP tasks to build linguistic applications using Python librariesUnderstand, analyze, and generate text to provide accurate resultsInterpret human language using various NLP concepts, methodologies, and toolsBook Description Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you’ll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you’ll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learnUnderstand how NLP powers modern applicationsExplore key NLP techniques to build your natural language vocabularyTransform text data into mathematical data structures and learn how to improve text mining modelsDiscover how various neural network architectures work with natural language dataGet the hang of building sophisticated text processing models using machine learning and deep learningCheck out state-of-the-art architectures that have revolutionized research in the NLP domainWho this book is for This NLP Python book is for anyone looking to learn NLP’s theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough understanding of the NLP methodologies for building linguistic applications; however, working knowledge of Python programming language and high school level mathematics is expected.
Natural Language Text Processing With Python
DOWNLOAD
Author : Jonathan Mugan
language : en
Publisher:
Release Date : 2017
Natural Language Text Processing With Python written by Jonathan Mugan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.
"Even though computers can't read, they're very effective at extracting information from natural language text. They can determine the main themes in the text, figure out if the writers of the text have positive or negative feelings about what they've written, decide if two documents are similar, add labels to documents, and more. This course shows you how to accomplish some common NLP (natural language processing) tasks using Python, an easy to understand, general programming language, in conjunction with the Python NLP libraries, NLTK, spaCy, gensim, and scikit-learn. The course is designed for basic level programmers with or without Python experience."--Resource description page.
Hands On Natural Language Processing With Tensorflow
DOWNLOAD
Author : Michael Walker
language : en
Publisher:
Release Date : 2018-07-31
Hands On Natural Language Processing With Tensorflow written by Michael Walker and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with categories.
***** BUY NOW (will soon return to 24.97 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) ***** *** Free eBook for customers who purchase the print book from Amazon *** Are you thinking of learning more Natural Language Processing (NLP) using TensorFlow? This book is for you. It would seek to explain common terms and algorithms in an intuitive way. The authors used a progressive approach whereby we start out slowly and improve on the complexity of our solutions.This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using ̈NLP. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of Data Science and NLP. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction to Natural Language Processing What is Natural Language Processing Perspectivizing NLP: Areas of AI and Their Interdependencies Purpose of Natural Language Processing Text Manipulation Tokenization Stemming Lemmatization Normalization Accessing Text Corpora and Lexical Resources Processing Raw Text Categorizing and Tagging Words NLP Applications Text Classification Sentiment Classification Topic Modelling Question Answering Speech Recognition Machine Translation Word Representation Bag of Words One-Hot Encoding Word Vectors Representation Word2Vec and GloVe Learning to Classify Text Supervised Classification Decision Trees Naive Bayes Classifiers Maximum Entropy Classifiers Deep Learning for NLP What is Deep Learning Feed Forward Neural Networks Recurrent Neural Networks Gated Recurrent Unit Long Short Term Memory Language Processing and Python using NLTK Introduction to TensorFlow Text Classification Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: If you want to smash NLP from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK.Q: Does this book include everything I need to become a NLP expert?A: Unfortunately, no. This book is designed for readers taking their first steps in NLP and further learning will be required beyond this book to master all aspects of NLP.Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected].
Natural Language Processing And Computational Linguistics
DOWNLOAD
Author : Bhargav Srinivasa-Desikan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-29
Natural Language Processing And Computational Linguistics written by Bhargav Srinivasa-Desikan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-29 with Computers categories.
Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book Description Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis. What you will learn Why text analysis is important in our modern age Understand NLP terminology and get to know the Python tools and datasets Learn how to pre-process and clean textual data Convert textual data into vector space representations Using spaCy to process text Train your own NLP models for computational linguistics Use statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learn Employ deep learning techniques for text analysis using Keras Who this book is for This book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!
Natural Language Processing With Python
DOWNLOAD
Author : Steven Bird
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2009-06-12
Natural Language Processing With Python written by Steven Bird and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-12 with Computers categories.
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Natural Language Processing With Python
DOWNLOAD
Author : Ryan Lofton
language : en
Publisher: Independently Published
Release Date : 2025-08-02
Natural Language Processing With Python written by Ryan Lofton and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-02 with Computers categories.
Natural Language Processing with Python: Build Real-World NLP Applications Using NLTK, spaCy, and Transformers This hands-on guide takes you on a practical journey into the world of Natural Language Processing (NLP) using Python. Whether you're a beginner or looking to enhance your skills, this book equips you with the tools and techniques to build real-world NLP applications using the most popular libraries: NLTK, spaCy, and Hugging Face Transformers. From foundational text processing to cutting-edge deep learning models, you'll learn how to preprocess, analyze, and understand text in meaningful ways. Covering everything from tokenization and named entity recognition to fine-tuning transformer models like BERT and GPT, the book blends theory with real implementation. You'll work through complete projects such as text classification, sentiment analysis, question answering, and language generation making it easy to apply what you learn directly to real use cases. Natural Language Processing with Python bridges the gap between theory and practice by guiding readers through essential NLP workflows using three powerful libraries. You'll master the basics with NLTK, streamline processes with spaCy, and tap into state-of-the-art AI using Hugging Face Transformers. The book is structured to build your confidence from the ground up starting with core preprocessing tasks and culminating in the deployment of modern NLP applications. Key Features of This Book: Step-by-step tutorials for practical NLP tasks using real datasets In-depth exploration of NLTK, spaCy, and Transformers Full projects on text classification, summarization, and more Clear explanations with annotated code examples Guidance on deploying NLP models with FastAPI or Flask Best practices for evaluating model performance and mitigating bias This book is ideal for Python developers, data scientists, machine learning enthusiasts, and students who want to learn NLP through hands-on projects. No prior experience with NLP is required, but a basic understanding of Python will help you get the most out of the book. Ready to unlock the power of language with code? Natural Language Processing with Python gives you the skills and confidence to build your own NLP applications from scratch. Start your NLP journey today and turn messy text into smart insights!
Hands On Natural Language Processing With Pytorch 1 X
DOWNLOAD
Author : Thomas Dop
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-09
Hands On Natural Language Processing With Pytorch 1 X written by Thomas Dop and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-09 with Computers categories.
Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key FeaturesGet to grips with word embeddings, semantics, labeling, and high-level word representations using practical examplesLearn modern approaches to NLP and explore state-of-the-art NLP models using PyTorchImprove your NLP applications with innovative neural networks such as RNNs, LSTMs, and CNNsBook Description In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them. What you will learnUse NLP techniques for understanding, processing, and generating textUnderstand PyTorch, its applications and how it can be used to build deep linguistic modelsExplore the wide variety of deep learning architectures for NLPDevelop the skills you need to process and represent both structured and unstructured NLP dataBecome well-versed with state-of-the-art technologies and exciting new developments in the NLP domainCreate chatbots using attention-based neural networksWho this book is for This PyTorch book is for NLP developers, machine learning and deep learning developers, and anyone interested in building intelligent language applications using both traditional NLP approaches and deep learning architectures. If you’re looking to adopt modern NLP techniques and models for your development projects, this book is for you. Working knowledge of Python programming, along with basic working knowledge of NLP tasks, is required.
Mastering Natural Language Processing Using Python
DOWNLOAD
Author : Dr. Goonjan Jain
language : en
Publisher: Sultan Chand & Sons
Release Date : 2025-02-01
Mastering Natural Language Processing Using Python written by Dr. Goonjan Jain and has been published by Sultan Chand & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-01 with Computers categories.
This book is a comprehensive guide to Natural Language Processing (NLP), designed for both beginners and advanced learners. Whether you're just starting or looking to refine your skills, this book takes you through every aspect of NLP – from the basics of text processing to cutting-edge machine learning techniques used in NLP today. It combines theoretical foundations with practical examples using Python, making complex NLP concepts accessible and actionable. The book is rich with practical exercises, hands-on Python code snippets, and visual aids, ensuring that readers not only understand the concepts but also see how they apply in real-world scenarios. By the end of the book, readers will be proficient in using NLP libraries and will have a clear understanding of how to implement NLP solutions in Python.