Understanding Big Data Scalability
DOWNLOAD
Download Understanding Big Data Scalability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding Big Data Scalability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Understanding Big Data Scalability
DOWNLOAD
Author : Cory Isaacson
language : en
Publisher: Prentice Hall
Release Date : 2014-07-11
Understanding Big Data Scalability written by Cory Isaacson and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-11 with Computers categories.
Get Started Scaling Your Database Infrastructure for High-Volume Big Data Applications “Understanding Big Data Scalability presents the fundamentals of scaling databases from a single node to large clusters. It provides a practical explanation of what ‘Big Data’ systems are, and fundamental issues to consider when optimizing for performance and scalability. Cory draws on many years of experience to explain issues involved in working with data sets that can no longer be handled with single, monolithic relational databases.... His approach is particularly relevant now that relational data models are making a comeback via SQL interfaces to popular NoSQL databases and Hadoop distributions.... This book should be especially useful to database practitioners new to scaling databases beyond traditional single node deployments.” —Brian O’Krafka, software architect Understanding Big Data Scalability presents a solid foundation for scaling Big Data infrastructure and helps you address each crucial factor associated with optimizing performance in scalable and dynamic Big Data clusters. Database expert Cory Isaacson offers practical, actionable insights for every technical professional who must scale a database tier for high-volume applications. Focusing on today’s most common Big Data applications, he introduces proven ways to manage unprecedented data growth from widely diverse sources and to deliver real-time processing at levels that were inconceivable until recently. Isaacson explains why databases slow down, reviews each major technique for scaling database applications, and identifies the key rules of database scalability that every architect should follow. You’ll find insights and techniques proven with all types of database engines and environments, including SQL, NoSQL, and Hadoop. Two start-to-finish case studies walk you through planning and implementation, offering specific lessons for formulating your own scalability strategy. Coverage includes Understanding the true causes of database performance degradation in today’s Big Data environments Scaling smoothly to petabyte-class databases and beyond Defining database clusters for maximum scalability and performance Integrating NoSQL or columnar databases that aren’t “drop-in” replacements for RDBMSes Scaling application components: solutions and options for each tier Recognizing when to scale your data tier—a decision with enormous consequences for your application environment Why data relationships may be even more important in non-relational databases Why virtually every database scalability implementation still relies on sharding, and how to choose the best approach How to set clear objectives for architecting high-performance Big Data implementations The Big Data Scalability Series is a comprehensive, four-part series, containing information on many facets of database performance and scalability. Understanding Big Data Scalability is the first book in the series. Learn more and join the conversation about Big Data scalability at bigdatascalability.com.
Understanding Big Data Scalability
DOWNLOAD
Author : Cory Isaacson
language : en
Publisher:
Release Date : 2014
Understanding Big Data Scalability written by Cory Isaacson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Big data categories.
Understanding Big Data Analytics For Enterprise Class Hadoop And Streaming Data
DOWNLOAD
Author : IBM Paul Zikopoulos
language : en
Publisher: McGraw Hill Professional
Release Date : 2011-10-19
Understanding Big Data Analytics For Enterprise Class Hadoop And Streaming Data written by IBM Paul Zikopoulos and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-19 with Computers categories.
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer
Harness The Power Of Big Data The Ibm Big Data Platform
DOWNLOAD
Author : Paul Zikopoulos
language : en
Publisher: McGraw Hill Professional
Release Date : 2012-11-08
Harness The Power Of Big Data The Ibm Big Data Platform written by Paul Zikopoulos and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-08 with Computers categories.
Boost your Big Data IQ! Gain insight into how to govern and consume IBM’s unique in-motion and at-rest Big Data analytic capabilities Big Data represents a new era of computing—an inflection point of opportunity where data in any format may be explored and utilized for breakthrough insights—whether that data is in-place, in-motion, or at-rest. IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is infusing open source Big Data technologies with IBM innovation that manifest in a platform capable of "changing the game." The four defining characteristics of Big Data—volume, variety, velocity, and veracity—are discussed. You’ll understand how IBM is fully committed to Hadoop and integrating it into the enterprise. Hear about how organizations are taking inventories of their existing Big Data assets, with search capabilities that help organizations discover what they could already know, and extend their reach into new data territories for unprecedented model accuracy and discovery. In this book you will also learn not just about the technologies that make up the IBM Big Data platform, but when to leverage its purpose-built engines for analytics on data in-motion and data at-rest. And you’ll gain an understanding of how and when to govern Big Data, and how IBM’s industry-leading InfoSphere integration and governance portfolio helps you understand, govern, and effectively utilize Big Data. Industry use cases are also included in this practical guide.
Understanding Big Data Analytics For Enterprise Class Hadoop And Streaming Data
DOWNLOAD
Author : Paul Zikopoulos
language : en
Publisher: McGraw Hill Professional
Release Date : 2011-10-22
Understanding Big Data Analytics For Enterprise Class Hadoop And Streaming Data written by Paul Zikopoulos and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-22 with Computers categories.
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer
Big Data Analytics And Cloud Computing
DOWNLOAD
Author : Syed Thouheed Ahmed
language : en
Publisher: MileStone Research Publications
Release Date : 2021-09-05
Big Data Analytics And Cloud Computing written by Syed Thouheed Ahmed and has been published by MileStone Research Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-05 with Computers categories.
Big data analytics and cloud computing is the fastest growing technologies in current era. This text book serves as a purpose in providing an understanding of big data principles and framework at the beginner?s level. The text book covers various essential concepts of big-data analytics and processing tools such as HADOOP and YARN. The Textbook covers an analogical understanding on bridging cloud computing with big-data technologies with essential cloud infrastructure protocol and ecosystem concepts. PART I: Hadoop Distributed File System Basics, Running Example Programs and Benchmarks, Hadoop MapReduce Framework Essential Hadoop Tools, Hadoop YARN Applications, Managing Hadoop with Apache Ambari, Basic Hadoop Administration Procedures PART II: Introduction to Cloud Computing: Origins and Influences, Basic Concepts and Terminology, Goals and Benefits, Risks and Challenges. Fundamental Concepts and Models: Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models. Cloud Computing Technologies:Broadband networks and internet architecture, data center technology, virtualization technology, web technology, multi-tenant technology, service Technology Cloud Infrastructure Mechanisms:Logical Network Perimeter, Virtual Server, Cloud Storage Device, Cloud Usage Monitor, Resource Replication, Ready-made environment
Scaling Big Data With Hadoop And Solr Second Edition
DOWNLOAD
Author : Hrishikesh Vijay Karambelkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-04-27
Scaling Big Data With Hadoop And Solr Second Edition written by Hrishikesh Vijay Karambelkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-27 with Computers categories.
This book is aimed at developers, designers, and architects who would like to build big data enterprise search solutions for their customers or organizations. No prior knowledge of Apache Hadoop and Apache Solr/Lucene technologies is required.
Big Data
DOWNLOAD
Author : Nathan Warren
language : en
Publisher:
Release Date : 2015
Big Data written by Nathan Warren and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.
Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.
Big Data Analytics For Large Scale Multimedia Search
DOWNLOAD
Author : Stefanos Vrochidis
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-18
Big Data Analytics For Large Scale Multimedia Search written by Stefanos Vrochidis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-18 with Technology & Engineering categories.
A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.
Big Data Fundamentals
DOWNLOAD
Author : Thomas Erl
language : en
Publisher: Prentice Hall
Release Date : 2015-12-29
Big Data Fundamentals written by Thomas Erl and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-29 with Computers categories.
“This text should be required reading for everyone in contemporary business.” --Peter Woodhull, CEO, Modus21 “The one book that clearly describes and links Big Data concepts to business utility.” --Dr. Christopher Starr, PhD “Simply, this is the best Big Data book on the market!” --Sam Rostam, Cascadian IT Group “...one of the most contemporary approaches I’ve seen to Big Data fundamentals...” --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data’s fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 “V” characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data’s relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data’s distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning