Uncertainty Quantification In Scientific Computing
DOWNLOAD
Download Uncertainty Quantification In Scientific Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Quantification In Scientific Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Uncertainty Quantification In Scientific Computing
DOWNLOAD
Author : Andrew Dienstfrey
language : en
Publisher: Springer
Release Date : 2012-08-11
Uncertainty Quantification In Scientific Computing written by Andrew Dienstfrey and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-11 with Computers categories.
This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.
Combinatorial Scientific Computing
DOWNLOAD
Author : Uwe Naumann
language : en
Publisher: CRC Press
Release Date : 2012-01-25
Combinatorial Scientific Computing written by Uwe Naumann and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Computers categories.
Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.
Verification Validation And Uncertainty Quantification In Scientific Computing
DOWNLOAD
Author : William L. Oberkampf
language : en
Publisher: Cambridge University Press
Release Date : 2025-04-30
Verification Validation And Uncertainty Quantification In Scientific Computing written by William L. Oberkampf and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-30 with Computers categories.
Can you trust results from modeling and simulation? This text provides a framework for assessing the reliability of and uncertainty included in the results used by decision makers and policy makers in industry and government. The emphasis is on models described by PDEs and their numerical solution. Procedures and results from all aspects of verification and validation are integrated with modern methods in uncertainty quantification and stochastic simulation. Methods for combining numerical approximation errors, uncertainty in model input parameters, and model form uncertainty are presented in order to estimate the uncertain response of a system in the presence of stochastic inputs and lack of knowledge uncertainty. This new edition has been extensively updated, including a fresh look at model accuracy assessment and the responsibilities of management for modeling and simulation activities. Extra homework problems and worked examples have been added to each chapter, suitable for course use or self-study.
Computational Science Iccs 2019
DOWNLOAD
Author : João M. F. Rodrigues
language : en
Publisher: Springer
Release Date : 2019-06-07
Computational Science Iccs 2019 written by João M. F. Rodrigues and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-07 with Computers categories.
The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Numerical Methods For Stochastic Computations
DOWNLOAD
Author : Dongbin Xiu
language : en
Publisher: Princeton University Press
Release Date : 2010-07-01
Numerical Methods For Stochastic Computations written by Dongbin Xiu and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-01 with Mathematics categories.
The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples
Uncertainty Quantification And Predictive Computational Science
DOWNLOAD
Author : Ryan G. McClarren
language : en
Publisher: Springer
Release Date : 2018-11-23
Uncertainty Quantification And Predictive Computational Science written by Ryan G. McClarren and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-23 with Science categories.
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.
Verification And Validation In Scientific Computing
DOWNLOAD
Author : William L. Oberkampf
language : en
Publisher: Cambridge University Press
Release Date : 2010-10-14
Verification And Validation In Scientific Computing written by William L. Oberkampf and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-14 with Computers categories.
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Scientific Computing In Electrical Engineering
DOWNLOAD
Author : Andreas Bartel
language : en
Publisher: Springer
Release Date : 2016-05-09
Scientific Computing In Electrical Engineering written by Andreas Bartel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-09 with Mathematics categories.
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification. this book="" will="" appeal="" to="" mathematicians="" and="" electrical="" engineers.="" it="" offers="" a="" valuable="" starting="" point="" for="" developers="" of="" algorithms="" programs="" who="" want="" learn="" about="" recent="" advances="" in="" other="" fields="" as="" well="" open="" problems="" coming="" from="" industry.="" moreover,="" be="" use="" representatives="" industry="" with="" an="" interest="" new="" program="" tools="" mathematical="" methods.
Cultures Of Prediction In Atmospheric And Climate Science
DOWNLOAD
Author : Matthias Heymann
language : en
Publisher: Taylor & Francis
Release Date : 2017-06-26
Cultures Of Prediction In Atmospheric And Climate Science written by Matthias Heymann and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-26 with Computers categories.
In recent decades, science has experienced a revolutionary shift. The development and extensive application of computer modelling and simulation has transformed the knowledge‐making practices of scientific fields as diverse as astro‐physics, genetics, robotics and demography. This epistemic transformation has brought with it a simultaneous heightening of political relevance and a renewal of international policy agendas, raising crucial questions about the nature and application of simulation knowledges throughout public policy. Through a diverse range of case studies, spanning over a century of theoretical and practical developments in the atmospheric and environmental sciences, this book argues that computer modelling and simulation have substantially changed scientific and cultural practices and shaped the emergence of novel ‘cultures of prediction’. Making an innovative, interdisciplinary contribution to understanding the impact of computer modelling on research practice, institutional configurations and broader cultures, this volume will be essential reading for anyone interested in the past, present and future of climate change and the environmental sciences.
Uncertainty Quantification
DOWNLOAD
Author : Ralph C. Smith
language : en
Publisher: SIAM
Release Date : 2024-09-13
Uncertainty Quantification written by Ralph C. Smith and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-13 with Mathematics categories.
Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.