Training Systems Using Python Statistical Modeling
DOWNLOAD
Download Training Systems Using Python Statistical Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Training Systems Using Python Statistical Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Training Systems Using Python Statistical Modeling
DOWNLOAD
Author : Curtis Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20
Training Systems Using Python Statistical Modeling written by Curtis Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
Leverage the power of Python and statistical modeling techniques for building accurate predictive models Key FeaturesGet introduced to Python's rich suite of libraries for statistical modelingImplement regression, clustering and train neural networks from scratchIncludes real-world examples on training end-to-end machine learning systems in PythonBook Description Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics. You’ll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them. By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics. What you will learnUnderstand the importance of statistical modelingLearn about the various Python packages for statistical analysisImplement algorithms such as Naive Bayes, random forests, and moreBuild predictive models from scratch using Python's scikit-learn libraryImplement regression analysis and clusteringLearn how to train a neural network in PythonWho this book is for If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.
Training Your Systems With Python Statistical Modeling
DOWNLOAD
Author : Curtis Miller
language : en
Publisher:
Release Date : 2018
Training Your Systems With Python Statistical Modeling written by Curtis Miller and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
"Python, a multi-paradigm programming language, has become the language of choice for data scientists for data analysis, visualization, and machine learning. This course takes you through the various different concepts that get you acquainted and working with the different aspects of Machine Learning. You'll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics with Pandas. From there, you will be introduced to supervised learning, where you will explore the principles of machine learning and train different machine learning models. Next, you'll work with binary prediction models, such as data classification using K-nearest neighbors, decision trees, and random forests. After that, you'll work with algorithms for regression analysis, and employ different types of regression, such as ridge and lasso regression, and spline interpolation using SciPy. Then, you'll work on neural networks, train them, and employ regression on neural networks. You'll be introduced to clustering, and learn to evaluate cluster model results, as well as employ different clustering types such as hierarchical and spectral clustering. Finally, you'll learn about the dimensionality reduction concepts such as principal component analysis and low dimension representation."--Resource description page.
Machine Learning And Deep Learning Using Python And Tensorflow
DOWNLOAD
Author : Venkata Reddy Konasani
language : en
Publisher: McGraw Hill Professional
Release Date : 2021-04-29
Machine Learning And Deep Learning Using Python And Tensorflow written by Venkata Reddy Konasani and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-29 with Technology & Engineering categories.
Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory
Statistics For Machine Learning
DOWNLOAD
Author : Pratap Dangeti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-21
Statistics For Machine Learning written by Pratap Dangeti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-21 with Computers categories.
Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning fundamentals necessary to build models Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages Analyze the results and tune the model appropriately to your own predictive goals Understand the concepts of required statistics for Machine Learning Introduce yourself to necessary fundamentals required for building supervised & unsupervised deep learning models Learn reinforcement learning and its application in the field of artificial intelligence domain In Detail Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem. Style and approach This practical, step-by-step guide will give you an understanding of the Statistical and Machine Learning fundamentals you'll need to build models.
Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-23
Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Xv Brazilian Symposium On Computer Graphics And Image Processing
DOWNLOAD
Author : Luiz Marcos Garcia Gonçalves
language : en
Publisher: IEEE Computer Society Press
Release Date : 2002
Xv Brazilian Symposium On Computer Graphics And Image Processing written by Luiz Marcos Garcia Gonçalves and has been published by IEEE Computer Society Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Computers categories.
"IEEE Computer Society Order Number PR01846"--verso of T.p.
Acm Sigir Conference On Research And Development In Information Retrieval
DOWNLOAD
Author : International Conference on Research and Development in Information Retrieval. 27, 2004, Sheffield
language : en
Publisher:
Release Date : 2004
Acm Sigir Conference On Research And Development In Information Retrieval written by International Conference on Research and Development in Information Retrieval. 27, 2004, Sheffield and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.
Science
DOWNLOAD
Author : John Michels (Journalist)
language : en
Publisher:
Release Date : 2005
Science written by John Michels (Journalist) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Science categories.
A weekly record of scientific progress.
Business Data Science Combining Machine Learning And Economics To Optimize Automate And Accelerate Business Decisions
DOWNLOAD
Author : Matt Taddy
language : en
Publisher: McGraw Hill Professional
Release Date : 2019-08-23
Business Data Science Combining Machine Learning And Economics To Optimize Automate And Accelerate Business Decisions written by Matt Taddy and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-23 with Business & Economics categories.
Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
F S Index United States Annual
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2007
F S Index United States Annual written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Commercial products categories.