Training Data For Machine Learning Models
DOWNLOAD
Download Training Data For Machine Learning Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Training Data For Machine Learning Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Training Data For Machine Learning Models
DOWNLOAD
Author : Safari, an O'Reilly Media Company
language : en
Publisher:
Release Date : 2022
Training Data For Machine Learning Models written by Safari, an O'Reilly Media Company and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. You'll gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system.
Handbook Of Deep Learning Models
DOWNLOAD
Author : Parag Verma
language : en
Publisher: CRC Press
Release Date : 2025-11-18
Handbook Of Deep Learning Models written by Parag Verma and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-11-18 with Computers categories.
This volume covers a comprehensive range of fundamental concepts in deep learning and artificial neural networks, making it suitable for beginners looking to learn the basics. Using Keras, a popular neural network API in Python, this book offers practical examples that reinforce the theoretical concepts discussed. Real-world case studies add relevance by showing how deep learning is applied across various domains. The book covers topics such as layers, activation functions, optimization algorithms, backpropagation, convolutional neural networks (CNNs), data augmentation, and transfer learning – providing a solid foundation for building effective neural network models. This book is a valuable resource for anyone interested in deep learning and artificial neural networks, offering both theoretical insights and practical implementation experience.
Debugging Machine Learning Models With Python
DOWNLOAD
Author : Ali Madani
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-09-15
Debugging Machine Learning Models With Python written by Ali Madani and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-15 with Computers categories.
Master reproducible ML and DL models with Python and PyTorch to achieve high performance, explainability, and real-world success Key Features Learn how to improve performance of your models and eliminate model biases Strategically design your machine learning systems to minimize chances of failure in production Discover advanced techniques to solve real-world challenges Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDebugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.What you will learn Enhance data quality and eliminate data flaws Effectively assess and improve the performance of your models Develop and optimize deep learning models with PyTorch Mitigate biases to ensure fairness Understand explainability techniques to improve model qualities Use test-driven modeling for data processing and modeling improvement Explore techniques to bring reliable models to production Discover the benefits of causal and human-in-the-loop modeling Who this book is forThis book is for data scientists, analysts, machine learning engineers, Python developers, and students looking to build reliable, high-performance, and explainable machine learning models for production across diverse industrial applications. Fundamental Python skills are all you need to dive into the concepts and practical examples covered. Whether you're new to machine learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights to elevate your modeling skills.
Distributed Machine Learning And Gradient Optimization
DOWNLOAD
Author : Jiawei Jiang
language : en
Publisher: Springer Nature
Release Date : 2022-02-23
Distributed Machine Learning And Gradient Optimization written by Jiawei Jiang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-23 with Computers categories.
This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Applying Machine Learning Techniques To Bioinformatics Few Shot And Zero Shot Methods
DOWNLOAD
Author : Lilhore, Umesh Kumar
language : en
Publisher: IGI Global
Release Date : 2024-03-22
Applying Machine Learning Techniques To Bioinformatics Few Shot And Zero Shot Methods written by Lilhore, Umesh Kumar and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-22 with Computers categories.
Why are cutting-edge data science techniques such as bioinformatics, few-shot learning, and zero-shot learning underutilized in the world of biological sciences?. In a rapidly advancing field, the failure to harness the full potential of these disciplines limits scientists’ ability to unlock critical insights into biological systems, personalized medicine, and biomarker identification. This untapped potential hinders progress and limits our capacity to tackle complex biological challenges. The solution to this issue lies within the pages of Applying Machine Learning Techniques to Bioinformatics. This book serves as a powerful resource, offering a comprehensive analysis of how these emerging disciplines can be effectively applied to the realm of biological research. By addressing these challenges and providing in-depth case studies and practical implementations, the book equips researchers, scientists, and curious minds with the knowledge and techniques needed to navigate the ever-changing landscape of bioinformatics and machine learning within the biological sciences.
Game Theory And Machine Learning For Cyber Security
DOWNLOAD
Author : Charles A. Kamhoua
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-15
Game Theory And Machine Learning For Cyber Security written by Charles A. Kamhoua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Technology & Engineering categories.
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
Adversarial Machine Learning
DOWNLOAD
Author : Aneesh Sreevallabh Chivukula
language : en
Publisher: Springer Nature
Release Date : 2023-03-06
Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-06 with Computers categories.
A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
A Survey Of Machine Learning Models For Prediabetes Screening
DOWNLOAD
Author : Amos Olwendo
language : en
Publisher: GRIN Verlag
Release Date : 2025-03-13
A Survey Of Machine Learning Models For Prediabetes Screening written by Amos Olwendo and has been published by GRIN Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-13 with Computers categories.
Scientific Study from the year 2025 in the subject Communications - Multimedia, Internet, New Technologies, grade: 18.0, Kenyatta University, language: English, abstract: Diabetes is gradually becoming a global challenge owing to the gradual increase in the number of cases of Type 2 diabetes mellitus (T2DM). T2DM is characterized as a state of hyperglycaemia due to abnormal control of insulin levels that eventually affects metabolism. This study aimed to review articles that implement machine learning methods to identify suitable risk factors for prediabetes. The study adopted the preferred reporting items for systematic review (PRISMA) protocol and research questions were formulated by the identification of synonyms and related terms "predictors and prediabetes and machine learning" from PubMed and Google scholar. Both observational and interventional original articles that were published between 2018 and 2023 were included in this study. Eligibility for inclusion was determined by scanning the article title, abstract, and study methodology section.
Ict Systems And Sustainability
DOWNLOAD
Author : Milan Tuba
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Ict Systems And Sustainability written by Milan Tuba and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Technology & Engineering categories.
This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 6th International Conference on ICT for Sustainable Development (ICT4SD 2021), held in Goa, India, on 5–6 August 2021. The book covers the topics such as big data and data mining, data fusion, IoT programming toolkits and frameworks, green communication systems and network, use of ICT in smart cities, sensor networks and embedded system, network and information security, wireless and optical networks, security, trust, and privacy, routing and control protocols, cognitive radio and networks, and natural language processing. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Deep Learning In Wireless Communications
DOWNLOAD
Author : Haijun Zhang
language : en
Publisher: Springer Nature
Release Date : 2024-10-03
Deep Learning In Wireless Communications written by Haijun Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-03 with Technology & Engineering categories.
The book offers a focused examination of deep learning-based wireless communication systems and their applications. While both principles and engineering practice are explored, greater emphasis is placed on the latter. The book offers an in-depth exploration of major topics such as cognitive spectrum intelligence, learning resource allocation optimization, transmission intelligence, learning traffic and mobility prediction, and security in wireless communication. Notably, the book provides a comprehensive and systematic treatment of practical issues related to intelligent wireless communication, making it particularly useful for those seeking to learn about practical solutions in AI-based wireless resource management. This book is a valuable resource for researchers, engineers, and graduate students in the fields of wireless communication, telecommunications, and related areas.