Download Thinking Data Science - eBooks (PDF)

Thinking Data Science


Thinking Data Science
DOWNLOAD

Download Thinking Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Thinking Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Thinking Data Science


Thinking Data Science
DOWNLOAD
Author : Poornachandra Sarang
language : en
Publisher: Springer Nature
Release Date : 2023-03-01

Thinking Data Science written by Poornachandra Sarang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-01 with Computers categories.


This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single “Cheat Sheet”. The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.



Data Science For Business


Data Science For Business
DOWNLOAD
Author : Foster Provost
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-07-27

Data Science For Business written by Foster Provost and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-27 with Business & Economics categories.


Annotation This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. By learning data science principles, you will understand the many data-mining techniques in use today. More importantly, these principles underpin the processes and strategies necessary to solve business problems through data mining techniques.



How To Think About Data Science


How To Think About Data Science
DOWNLOAD
Author : Diego Miranda-Saavedra
language : en
Publisher: CRC Press
Release Date : 2022-12-23

How To Think About Data Science written by Diego Miranda-Saavedra and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-23 with Computers categories.


This book is a timely and critical introduction for those interested in what data science is (and isn’t), and how it should be applied. The language is conversational and the content is accessible for readers without a quantitative or computational background; but, at the same time, it is also a practical overview of the field for the more technical readers. The overarching goal is to demystify the field and teach the reader how to develop an analytical mindset instead of following recipes. The book takes the scientist’s approach of focusing on asking the right question at every step as this is the single most important factor contributing to the success of a data science project. Upon finishing this book, the reader should be asking more questions than I have answered. This book is, therefore, a practising scientist’s approach to explaining data science through questions and examples.



Data Science Thinking


Data Science Thinking
DOWNLOAD
Author : Longbing Cao
language : en
Publisher: Springer
Release Date : 2018-08-17

Data Science Thinking written by Longbing Cao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-17 with Computers categories.


This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.



Becoming A Data Head


Becoming A Data Head
DOWNLOAD
Author : Alex J. Gutman
language : en
Publisher: John Wiley & Sons
Release Date : 2021-04-13

Becoming A Data Head written by Alex J. Gutman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-13 with Business & Economics categories.


"Turn yourself into a Data Head. You'll become a more valuable employee and make your organization more successful." Thomas H. Davenport, Research Fellow, Author of Competing on Analytics, Big Data @ Work, and The AI Advantage You've heard the hype around data - now get the facts. In Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, award-winning data scientists Alex Gutman and Jordan Goldmeier pull back the curtain on data science and give you the language and tools necessary to talk and think critically about it. You'll learn how to: Think statistically and understand the role variation plays in your life and decision making Speak intelligently and ask the right questions about the statistics and results you encounter in the workplace Understand what's really going on with machine learning, text analytics, deep learning, and artificial intelligence Avoid common pitfalls when working with and interpreting data Becoming a Data Head is a complete guide for data science in the workplace: covering everything from the personalities you’ll work with to the math behind the algorithms. The authors have spent years in data trenches and sought to create a fun, approachable, and eminently readable book. Anyone can become a Data Head—an active participant in data science, statistics, and machine learning. Whether you're a business professional, engineer, executive, or aspiring data scientist, this book is for you.



Think Like A Data Scientist


Think Like A Data Scientist
DOWNLOAD
Author : Brian Godsey
language : en
Publisher: Simon and Schuster
Release Date : 2017-03-09

Think Like A Data Scientist written by Brian Godsey and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-09 with Computers categories.


Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away



Thinking Data Science


Thinking Data Science
DOWNLOAD
Author : Poornachandra Sarang
language : en
Publisher:
Release Date : 2023

Thinking Data Science written by Poornachandra Sarang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.


This definitive guide to Machine Learning projects answers the problems an aspiring or experienced data scientist frequently has: Confused on what technology to use for your ML development? Should I use GOFAI, ANN/DNN or Transfer Learning? Can I rely on AutoML for model development? What if the client provides me Gig and Terabytes of data for developing analytic models? How do I handle high-frequency dynamic datasets? This book provides the practitioner with a consolidation of the entire data science process in a single "Cheat Sheet". The challenge for a data scientist is to extract meaningful information from huge datasets that will help to create better strategies for businesses. Many Machine Learning algorithms and Neural Networks are designed to do analytics on such datasets. For a data scientist, it is a daunting decision as to which algorithm to use for a given dataset. Although there is no single answer to this question, a systematic approach to problem solving is necessary. This book describes the various ML algorithms conceptually and defines/discusses a process in the selection of ML/DL models. The consolidation of available algorithms and techniques for designing efficient ML models is the key aspect of this book. Thinking Data Science will help practising data scientists, academicians, researchers, and students who want to build ML models using the appropriate algorithms and architectures, whether the data be small or big.



Thinking Like A Data Scientist


Thinking Like A Data Scientist
DOWNLOAD
Author : Suriya Senthilkumar
language : en
Publisher:
Release Date : 2019-10-23

Thinking Like A Data Scientist written by Suriya Senthilkumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-23 with categories.


This book will provide you with an in-depth understanding of machine learning, data science, predictive analytics, big data, data analytics, predictive modeling, and the applications of machine learning.If you are looking to get a head start on your dream career or improve your knowledge as a data scientist, credit risk analyst, credit risk modeler, or data analyst, this is the book for you. It is easy enough for a beginner to understand yet will provide you with a comprehensive understanding of the subject when read cover to cover. Every single step of building a predictive model is included from selecting the right variables and determining the appropriate type of model to testing and updating the model. This book contains numerous illustrative case studies and real-life application examples, graphing examples and techniques, and sophisticated thinking skills. Every chapter explains a different facet of machine learning and all of the various tools that one can use as a data scientist.



Artificial Intelligence For Business Optimization


Artificial Intelligence For Business Optimization
DOWNLOAD
Author : Bhuvan Unhelkar
language : en
Publisher: CRC Press
Release Date : 2021-08-09

Artificial Intelligence For Business Optimization written by Bhuvan Unhelkar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-09 with Computers categories.


This book explains how AI and Machine Learning can be applied to help businesses solve problems, support critical thinking and ultimately create customer value and increase profit. By considering business strategies, business process modeling, quality assurance, cybersecurity, governance and big data and focusing on functions, processes, and people’s behaviors it helps businesses take a truly holistic approach to business optimization. It contains practical examples that make it easy to understand the concepts and apply them. It is written for practitioners (consultants, senior executives, decision-makers) dealing with real-life business problems on a daily basis, who are keen to develop systematic strategies for the application of AI/ML/BD technologies to business automation and optimization, as well as researchers who want to explore the industrial applications of AI and higher-level students.



Hci International 2021 Late Breaking Posters


Hci International 2021 Late Breaking Posters
DOWNLOAD
Author : Constantine Stephanidis
language : en
Publisher: Springer Nature
Release Date : 2021-11-05

Hci International 2021 Late Breaking Posters written by Constantine Stephanidis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-05 with Computers categories.


This two-volume ​set CCIS 1498 and CCIS 1499 contains the late breaking posters presented during the 23rd International Conference on Human-Computer Interaction, HCII 2021, which was held virtually in July 2021. The total of 1276 papers and 241 posters included in the 39 HCII 2021 proceedings volumes was carefully reviewed and selected from 5222 submissions. Additionally, 174 papers and 146 posters are included in the volumes of the proceedings published after the conference, as “Late Breaking Work” (papers and posters). The posters presented in these two volumes are organized in topical sections as follows: HCI Theory and Practice; UX Design and Research in Intelligent Environments; Interaction with Robots, Chatbots, and Agents; Virtual, Augmented, and Mixed Reality; Games and Gamification; HCI in Mobility, Transport and Aviation; ​Design for All and Assistive Technologies; Physiology, Affect and Cognition; HCI for Health and Wellbeing; HCI in Learning, Teaching, and Education; Culture and Computing; Social Computing; Design Case Studies; User Experience Studies.