Download The The Machine Learning Workshop - eBooks (PDF)

The The Machine Learning Workshop


The The Machine Learning Workshop
DOWNLOAD

Download The The Machine Learning Workshop PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The The Machine Learning Workshop book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The The Machine Learning Workshop


The The Machine Learning Workshop
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-22

The The Machine Learning Workshop written by Hyatt Saleh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.


Take a comprehensive and step-by-step approach to understanding machine learning Key FeaturesDiscover how to apply the scikit-learn uniform API in all types of machine learning modelsUnderstand the difference between supervised and unsupervised learning modelsReinforce your understanding of machine learning concepts by working on real-world examplesBook Description Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms. The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you’ll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one. By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms. What you will learnUnderstand how to select an algorithm that best fits your dataset and desired outcomeExplore popular real-world algorithms such as K-means, Mean-Shift, and DBSCANDiscover different approaches to solve machine learning classification problemsDevelop neural network structures using the scikit-learn packageUse the NN algorithm to create models for predicting future outcomesPerform error analysis to improve your model's performanceWho this book is for The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.



Deep Learning Workshop


Deep Learning Workshop
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2020

Deep Learning Workshop written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.




The The Reinforcement Learning Workshop


The The Reinforcement Learning Workshop
DOWNLOAD
Author : Alessandro Palmas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-08-18

The The Reinforcement Learning Workshop written by Alessandro Palmas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.


Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide Key FeaturesUse TensorFlow to write reinforcement learning agents for performing challenging tasksLearn how to solve finite Markov decision problemsTrain models to understand popular video games like BreakoutBook Description Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you’ll be guided through different RL environments and frameworks. You’ll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you’ve explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you’ll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you’ll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you’ll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning. What you will learnUse OpenAI Gym as a framework to implement RL environmentsFind out how to define and implement reward functionExplore Markov chain, Markov decision process, and the Bellman equationDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference LearningUnderstand the multi-armed bandit problem and explore various strategies to solve itBuild a deep Q model network for playing the video game BreakoutWho this book is for If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.



The Machine Learning Workshop Second Edition


The Machine Learning Workshop Second Edition
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher:
Release Date : 2020-07-21

The Machine Learning Workshop Second Edition written by Hyatt Saleh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-21 with Computers categories.




Machine Learning Workshop


Machine Learning Workshop
DOWNLOAD
Author : HYATT. SALEH
language : en
Publisher:
Release Date : 2020

Machine Learning Workshop written by HYATT. SALEH and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.




The Deep Learning Workshop


The Deep Learning Workshop
DOWNLOAD
Author : Mirza Rahim Baig
language : en
Publisher:
Release Date : 2020-07-30

The Deep Learning Workshop written by Mirza Rahim Baig and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Computers categories.


Take a hands-on approach to understanding deep learning and build smart applications that can recognize images and interpret text Key Features Understand how to implement deep learning with TensorFlow and Keras Learn the fundamentals of computer vision and image recognition Study the architecture of different neural networks Book Description Are you fascinated by how deep learning powers intelligent applications such as self-driving cars, virtual assistants, facial recognition devices, and chatbots to process data and solve complex problems? Whether you are familiar with machine learning or are new to this domain, The Deep Learning Workshop will make it easy for you to understand deep learning with the help of interesting examples and exercises throughout. The book starts by highlighting the relationship between deep learning, machine learning, and artificial intelligence and helps you get comfortable with the TensorFlow 2.0 programming structure using hands-on exercises. You'll understand neural networks, the structure of a perceptron, and how to use TensorFlow to create and train models. The book will then let you explore the fundamentals of computer vision by performing image recognition exercises with convolutional neural networks (CNNs) using Keras. As you advance, you'll be able to make your model more powerful by implementing text embedding and sequencing the data using popular deep learning solutions. Finally, you'll get to grips with bidirectional recurrent neural networks (RNNs) and build generative adversarial networks (GANs) for image synthesis. By the end of this deep learning book, you'll have learned the skills essential for building deep learning models with TensorFlow and Keras. What you will learn Understand how deep learning, machine learning, and artificial intelligence are different Develop multilayer deep neural networks with TensorFlow Implement deep neural networks for multiclass classification using Keras Train CNN models for image recognition Handle sequence data and use it in conjunction with RNNs Build a GAN to generate high-quality synthesized images Who this book is for If you are interested in machine learning and want to create and train deep learning models using TensorFlow and Keras, this workshop is for you. A solid understanding of Python and its packages, along with basic machine learning concepts, will help you to learn the topics quickly.



The The Supervised Learning Workshop


The The Supervised Learning Workshop
DOWNLOAD
Author : Blaine Bateman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-02-28

The The Supervised Learning Workshop written by Blaine Bateman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.


Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithms Key FeaturesIdeal for those getting started with machine learning for the first timeA step-by-step machine learning tutorial with exercises and activities that help build key skillsStructured to let you progress at your own pace, on your own termsUse your physical print copy to redeem free access to the online interactive editionBook Description You already know you want to understand supervised learning, and a smarter way to do that is to learn by doing. The Supervised Learning Workshop focuses on building up your practical skills so that you can deploy and build solutions that leverage key supervised learning algorithms. You'll learn from real examples that lead to real results. Throughout The Supervised Learning Workshop, you'll take an engaging step-by-step approach to understand supervised learning. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend learning how to predict future values with auto regressors. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Supervised Learning Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your book. Fast-paced and direct, The Supervised Learning Workshop is the ideal companion for those with some Python background who are getting started with machine learning. You'll learn how to apply key algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead. What you will learnGet to grips with the fundamental of supervised learning algorithmsDiscover how to use Python libraries for supervised learningLearn how to load a dataset in pandas for testingUse different types of plots to visually represent the dataDistinguish between regression and classification problemsLearn how to perform classification using K-NN and decision treesWho this book is for Our goal at Packt is to help you be successful, in whatever it is you choose to do. The Supervised Learning Workshop is ideal for those with a Python background, who are just starting out with machine learning. Pick up a Workshop today, and let Packt help you develop skills that stick with you for life.



The Machine Learning Workshop Second Edition


The Machine Learning Workshop Second Edition
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher:
Release Date : 2020

The Machine Learning Workshop Second Edition written by Hyatt Saleh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Take a comprehensive and step-by-step approach to understanding machine learning Key Features Discover how to apply the scikit-learn uniform API in all types of machine learning models Understand the difference between supervised and unsupervised learning models Reinforce your understanding of machine learning concepts by working on real-world examples Book Description Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms. The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one. By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms. What you will learn Understand how to select an algorithm that best fits your dataset and desired outcome Explore popular real-world algorithms such as K-means, Mean-Shift, and DBSCAN Discover different approaches to solve machine learning classification problems Develop neural network structures using the scikit-learn package Use the NN algorithm to create models for predicting future outcomes Perform error analysis to improve your model's performance Who this book is for The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.



The Reinforcement Learning Workshop


The Reinforcement Learning Workshop
DOWNLOAD
Author : Alessandro Palmas
language : en
Publisher:
Release Date : 2020

The Reinforcement Learning Workshop written by Alessandro Palmas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Algorithms categories.


Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide Key Features Use TensorFlow to write reinforcement learning agents for performing challenging tasks Learn how to solve finite Markov decision problems Train models to understand popular video games like Breakout Book Description Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning. What you will learn Use OpenAI Gym as a framework to implement RL environments Find out how to define and implement reward function Explore Markov chain, Markov decision process, and the Bellman equation Distinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning Understand the multi-armed bandit problem and explore various strategies to solve it Build a deep Q model network for playing the video game Breakout Who this book is for If you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.



The The Deep Learning With Pytorch Workshop


The The Deep Learning With Pytorch Workshop
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-22

The The Deep Learning With Pytorch Workshop written by Hyatt Saleh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.


Get a head start in the world of AI and deep learning by developing your skills with PyTorch Key FeaturesLearn how to define your own network architecture in deep learningImplement helpful methods to create and train a model using PyTorch syntaxDiscover how intelligent applications using features like image recognition and speech recognition really process your dataBook Description Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you’re starting from scratch. It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures. The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues. By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps. What you will learnExplore the different applications of deep learningUnderstand the PyTorch approach to building neural networksCreate and train your very own perceptron using PyTorchSolve regression problems using artificial neural networks (ANNs)Handle computer vision problems with convolutional neural networks (CNNs)Perform language translation tasks using recurrent neural networks (RNNs)Who this book is for This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.