Download The Data Science Workshop - eBooks (PDF)

The Data Science Workshop


The Data Science Workshop
DOWNLOAD

Download The Data Science Workshop PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Data Science Workshop book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The The Data Science Workshop


The The Data Science Workshop
DOWNLOAD
Author : Anthony So
language : en
Publisher:
Release Date : 2020-08-28

The The Data Science Workshop written by Anthony So and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-28 with categories.


Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key Features Gain a full understanding of the model production and deployment process Build your first machine learning model in just five minutes and get a hands-on machine learning experience Understand how to deal with common challenges in data science projects Book Description Where there's data, there's insight. With so much data being generated, there is immense scope to extract meaningful information that'll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you'll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You'll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you'll get hands-on with approaches such as grid search and random search. Next, you'll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You'll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you'll have the skills to start working on data science projects confidently. By the end of this book, you'll have the skills to start working on data science projects confidently. What you will learn Explore the key differences between supervised learning and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Understand key concepts such as regression, classification, and clustering Discover advanced techniques to improve the accuracy of your model Understand how to speed up the process of adding new features Simplify your machine learning workflow for production Who this book is for This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.



The Data Science Workshop


The Data Science Workshop
DOWNLOAD
Author : Anthony So
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-29

The Data Science Workshop written by Anthony So and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-29 with Computers categories.


Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.



The The Data Science Workshop


The The Data Science Workshop
DOWNLOAD
Author : Anthony So
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-08-28

The The Data Science Workshop written by Anthony So and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-28 with Computers categories.


Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key FeaturesGain a full understanding of the model production and deployment processBuild your first machine learning model in just five minutes and get a hands-on machine learning experienceUnderstand how to deal with common challenges in data science projectsBook Description Where there’s data, there’s insight. With so much data being generated, there is immense scope to extract meaningful information that’ll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you’ll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You’ll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you’ll get hands-on with approaches such as grid search and random search. Next, you’ll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You’ll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you’ll have the skills to start working on data science projects confidently. By the end of this book, you’ll have the skills to start working on data science projects confidently. What you will learnExplore the key differences between supervised learning and unsupervised learningManipulate and analyze data using scikit-learn and pandas librariesUnderstand key concepts such as regression, classification, and clusteringDiscover advanced techniques to improve the accuracy of your modelUnderstand how to speed up the process of adding new featuresSimplify your machine learning workflow for productionWho this book is for This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.



The Data Science Workshop Second Edition


The Data Science Workshop Second Edition
DOWNLOAD
Author : Anthony So (Data scientist)
language : en
Publisher:
Release Date : 2020

The Data Science Workshop Second Edition written by Anthony So (Data scientist) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Gain expert guidance on how to successfully develop machine learning models in Python and build your own unique data platforms Key Features Gain a full understanding of the model production and deployment process Build your first machine learning model in just five minutes and get a hands-on machine learning experience Understand how to deal with common challenges in data science projects Book Description Where there's data, there's insight. With so much data being generated, there is immense scope to extract meaningful information that'll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you'll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You'll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you'll get hands-on with approaches such as grid search and random search. Next, you'll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You'll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you'll have the skills to start working on data science projects confidently. By the end of this book, you'll have the skills to start working on data science projects confidently. What you will learn Explore the key differences between supervised learning and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Understand key concepts such as regression, classification, and clustering Discover advanced techniques to improve the accuracy of your model Understand how to speed up the process of adding new features Simplify your machine learning workflow for production Who this book is for This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going ...



The The Applied Data Science Workshop


The The Applied Data Science Workshop
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-22

The The Applied Data Science Workshop written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.


Designed with beginners in mind, this workshop helps you make the most of Python libraries and the Jupyter Notebook’s functionality to understand how data science can be applied to solve real-world data problems. Key FeaturesGain useful insights into data science and machine learningExplore the different functionalities and features of a Jupyter NotebookDiscover how Python libraries are used with Jupyter for data analysisBook Description From banking and manufacturing through to education and entertainment, using data science for business has revolutionized almost every sector in the modern world. It has an important role to play in everything from app development to network security. Taking an interactive approach to learning the fundamentals, this book is ideal for beginners. You’ll learn all the best practices and techniques for applying data science in the context of real-world scenarios and examples. Starting with an introduction to data science and machine learning, you’ll start by getting to grips with Jupyter functionality and features. You’ll use Python libraries like sci-kit learn, pandas, Matplotlib, and Seaborn to perform data analysis and data preprocessing on real-world datasets from within your own Jupyter environment. Progressing through the chapters, you’ll train classification models using sci-kit learn, and assess model performance using advanced validation techniques. Towards the end, you’ll use Jupyter Notebooks to document your research, build stakeholder reports, and even analyze web performance data. By the end of The Applied Data Science Workshop, you’ll be prepared to progress from being a beginner to taking your skills to the next level by confidently applying data science techniques and tools to real-world projects. What you will learnUnderstand the key opportunities and challenges in data scienceUse Jupyter for data science tasks such as data analysis and modelingRun exploratory data analysis within a Jupyter NotebookVisualize data with pairwise scatter plots and segmented distributionAssess model performance with advanced validation techniquesParse HTML responses and analyze HTTP requestsWho this book is for If you are an aspiring data scientist who wants to build a career in data science or a developer who wants to explore the applications of data science from scratch and analyze data in Jupyter using Python libraries, then this book is for you. Although a brief understanding of Python programming and machine learning is recommended to help you grasp the topics covered in the book more quickly, it is not mandatory.



Data Science Workshop Alzheimer S Disease Classification And Prediction Using Machine Learning And Deep Learning With Python Gui


Data Science Workshop Alzheimer S Disease Classification And Prediction Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-08-21

Data Science Workshop Alzheimer S Disease Classification And Prediction Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-21 with Computers categories.


In the "Data Science Workshop: Alzheimer's Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI," the project aimed to address the critical task of Alzheimer's disease prediction. The journey began with a comprehensive data exploration phase, involving the analysis of a dataset containing various features related to brain scans and demographics of patients. This initial step was crucial in understanding the data's characteristics, identifying missing values, and gaining insights into potential patterns that could aid in diagnosis. Upon understanding the dataset, the categorical features' distributions were meticulously examined. The project expertly employed pie charts, bar plots, and stacked bar plots to visualize the distribution of categorical variables like "Group," "M/F," "MMSE," "CDR," and "age_group." These visualizations facilitated a clear understanding of the demographic and clinical characteristics of the patients, highlighting key factors contributing to Alzheimer's disease. The analysis revealed significant patterns, such as the prevalence of Alzheimer's in different age groups, gender-based distribution, and cognitive performance variations. Moving ahead, the project ventured into the realm of predictive modeling. Employing machine learning techniques, the team embarked on a journey to develop models capable of predicting Alzheimer's disease with high accuracy. The focus was on employing various machine learning algorithms, including K-Nearest Neighbors (KNN), Decision Trees, Random Forests, Gradient Boosting, Light Gradient Boosting, Multi-Layer Perceptron, and Extreme Gradient Boosting. Grid search was applied to tune hyperparameters, optimizing the models' performance. The evaluation process was meticulous, utilizing a range of metrics such as accuracy, precision, recall, F1-score, and confusion matrices. This intricate analysis ensured a comprehensive assessment of each model's ability to predict Alzheimer's cases accurately. The project further delved into deep learning methodologies to enhance predictive capabilities. An arsenal of deep learning architectures, including Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Feedforward Neural Networks (FNN), and Recurrent Neural Networks (RNN), were employed. These models leveraged the intricate relationships present in the data to make refined predictions. The evaluation extended to ROC curves and AUC scores, providing insights into the models' ability to differentiate between true positive and false positive rates. The project also showcased an innovative Python GUI built using PyQt. This graphical interface provided a user-friendly platform to input data and visualize the predictions. The GUI's interactive nature allowed users to explore model outcomes and predictions while seamlessly navigating through different input options. In conclusion, the "Data Science Workshop: Alzheimer's Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI" was a comprehensive endeavor that involved meticulous data exploration, distribution analysis of categorical features, and extensive model development and evaluation. It skillfully navigated through machine learning and deep learning techniques, deploying a variety of algorithms to predict Alzheimer's disease. The focus on diverse metrics ensured a holistic assessment of the models' performance, while the innovative GUI offered an intuitive platform to engage with predictions interactively. This project stands as a testament to the power of data science in tackling complex healthcare challenges.



The Applied Data Science Workshop Second Edition


The Applied Data Science Workshop Second Edition
DOWNLOAD
Author : Alex Galea
language : en
Publisher:
Release Date : 2020-07-21

The Applied Data Science Workshop Second Edition written by Alex Galea and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-21 with Computers categories.




Geospatial Data Science Techniques And Applications


Geospatial Data Science Techniques And Applications
DOWNLOAD
Author : Hassan A. Karimi
language : en
Publisher: CRC Press
Release Date : 2017-10-24

Geospatial Data Science Techniques And Applications written by Hassan A. Karimi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-24 with Computers categories.


Data science has recently gained much attention for a number of reasons, and among them is Big Data. Scientists (from almost all disciplines including physics, chemistry, biology, sociology, among others) and engineers (from all fields including civil, environmental, chemical, mechanical, among others) are faced with challenges posed by data volume, variety, and velocity, or Big Data. This book is designed to highlight the unique characteristics of geospatial data, demonstrate the need to different approaches and techniques for obtaining new knowledge from raw geospatial data, and present select state-of-the-art geospatial data science techniques and how they are applied to various geoscience problems.



Data Science For Marketing Analytics


Data Science For Marketing Analytics
DOWNLOAD
Author : Mirza Rahim Baig
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-07

Data Science For Marketing Analytics written by Mirza Rahim Baig and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-07 with Computers categories.


Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily.



Roundtable On Data Science Postsecondary Education


Roundtable On Data Science Postsecondary Education
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2020-09-02

Roundtable On Data Science Postsecondary Education written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-02 with Education categories.


Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.