Statistics For Beginners In Data Science
DOWNLOAD
Download Statistics For Beginners In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics For Beginners In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistics Essentials For Beginner In Data Science
DOWNLOAD
Author : Jay Mishra
language : en
Publisher: AI Sciences LLC
Release Date : 2019-01-27
Statistics Essentials For Beginner In Data Science written by Jay Mishra and has been published by AI Sciences LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-27 with categories.
***** BUY NOW (will soon return to 24.95 $) *****Are you thinking of learning Statistics fundamentals for Data Science? If you are looking for a beginner book to master Statistics Learning fundamentals for Data Science, this book is for you. Who Should Read this Book?Aspiring data scientists who are looking forward to begin their journey in the vast field of data science. People who are seeking to learn and understand data analysis from its very deep-rooted basics have found the right book. Clear basic concepts make the foundation of a good knowledge base, which ultimately helps to gain sharp insights into this topic further. This book will give you the practical exposure along with its theory explained comprehensively. This book is the perfect compilation for beginners as well as intermediate learners who intend to learn statistics and data analysis techniques. Why this book?This book will guide you step by step from the very basics to how you can start your own data science project. The best part about this book is its structure, it's structured in such a way that integrates practicals along with its theory to make the concepts easily understandable. It will help you to understand a basic concept like mean, median, mode, scatter plot and histograms. Thus ensures no prior knowledge is required to start learning from this book. The content of this book is specially designed to encompass all the concepts that come under the domain of data science. This book will guide you through the problems and concepts of statistics. What is statistics?h2>Most of the people think statistics in data science is something different and more profound than what we learnt in our mathematics classes but it's not. It is the same concept of data collection followed by its organization, interpretation and presentation. Statistics is the key to develop a desired model in machine learning. Using statistics you can convert your raw meaningless chunk of data to a well-structured informative data. What's Inside This Book? Probability & Bayes Theorem, Data Exploration and Analysis Structured Data Estimates Mean and Median Estimates Variability Exploring the data distribution Percentiles and Boxplots Frequency table and Histograms Density Estimates Mode Correlation Categorical and Numeric Data Visualizing Multiple Variables Regression Analysis Clustering Analysis Statistical tests and ANOVA Classification Naïve Bayes Discriminant Analysis Linear regression Logistic Regression Statistical Machine Learning K_Nearest Neighbor Trees Models Bagging and Random Forest Boosting algorithms Principal Component Analysis K_means Clustering Hierarchical Clustering Model Based Clustering Sources & References From AI Sciences PublishingOur books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. Readers are advised to adopt a hands on approach, which would lead to better mental representations.Frequently Asked QuestionsQ: Does this book include everything I need to become a data analyst expert?A: Unfortunately, no. This book is designed for readers taking their first steps in statistics and data science and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform.***** MONEY BACK GUARANTEE BY AMAZON *****
Statistics For Beginners In Data Science
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-04-18
Statistics For Beginners In Data Science written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-18 with categories.
Statistics for Beginners in Data Science Statistical methods are an integral part of data science. Hence, a formal training in statistics is indispensable for data scientists. If you are keen on getting your foot into the lucrative data science and analysis universe, you need to have a fundamental understanding of statistical analysis. Besides, Python is a versatile programming language you need to master to become a career data scientist. As a data scientist, you will identify, clean, explore, analyze, and interpret trends or possible patterns in complex data sets. The explosive growth of Big Data means you have to manage enormous amounts of data, clean it, manipulate it, and process it. Only then the most relevant data can be used. Python is a natural data science tool as it has an assortment of useful libraries, such as Pandas, NumPy, SciPy, Matplotlib, Seaborn, StatsModels, IPython, and several more. And Python's focus on simplicity makes it relatively easy for you to learn. Importantly, the ease of performing repetitive tasks saves you precious time. Long story short--Python is simply a high-priority data science tool. How Is This Book Different? The book focuses equally on the theoretical as well as practical aspects of data science. You will learn how to implement elementary data science tools and algorithms from scratch. The book contains an in-depth theoretical and analytical explanation of all data science concepts and also includes dozens of hands-on, real-life projects that will help you understand the concepts better. The ready-to-access Python codes at various places right through the book are aimed at shortening your learning curve. The main goal is to present you with the concepts, the insights, the inspiration, and the right tools needed to dive into coding and analyzing data in Python. The main benefit of purchasing this book is you get quick access to all the extra content provided with this book--Python codes, exercises, references, and PDFs--on the publisher's website, at no extra price. You get to experiment with the practical aspects of Data Science right from page 1. Beginners in Python and statistics will find this book extremely informative, practical, and helpful. Even if you aren't new to Python and data science, you'll find the hands-on projects in this book immensely helpful. The topics covered include: Introduction to Statistics Getting Familiar with Python Data Exploration and Data Analysis Pandas, Matplotlib, and Seaborn for Statistical Visualization Exploring Two or More Variables and Categorical Data Statistical Tests and ANOVA Confidence Interval Regression Analysis Classification Analysis Click the BUY button and download the book now to start learning and coding Python for Data Science.
Statistics For Beginners
DOWNLOAD
Author : Matt Foster
language : en
Publisher:
Release Date : 2020-10-06
Statistics For Beginners written by Matt Foster and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-06 with Mathematics categories.
Become a Professional at Statistical Analysis and Data Science! Would you like to have the ability to implement statistical methods to your business, draw conclusions and make correct decisions based on them? Statistics play an important role in any industry and business. That's why there's a huge market for individuals who know how to conduct statistical analysis. People who have mastered this skill are considered the modern-day fortune tellers. Their abilities allow them to predict future business trends, market demands, profitability, general market risks, and sales volume! It's easy to get lost in the amount of available sources if you're only getting started. Conducting statistical analysis can be challenging for someone who was never properly introduced to the subject. This guide will help you, whether you're an absolute beginner to data science or an experienced data scientist who wants to learn new skills. Here, Matt Foster will teach you how to process data, predict outcomes, and upgrade your company's operations in the long term. Here's what you'll be able to do after reading this book: Understand and use descriptive statistics Use predictive analytics techniques to turn data into valuable information Use different learning algorithms to optimize your efficiency Analyze past data to predict future trends Integrate data from different sources to conduct a full analysis Use Python for files manipulation and handling Conduct data mining and social media analysis Master Python and PHP languages And so much more! If you're determined to learn statistical analysis, but intimidated by the huge amount of information and unfamiliar terminology, this guide will show you that you don't have to own a degree in data or computer science in order to develop this skill. All you need is this instruction manual, written in a clear, understandable way. The mechanisms are thoroughly explained and the step-by-step methods will help you conquer the world of descriptive statistics. If you want to learn how to conduct statistical analysis and implement it in your business, then Get Your Copy Now!
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Data Science For Beginners
DOWNLOAD
Author : Prof John Smith
language : en
Publisher: Independently Published
Release Date : 2018-12-12
Data Science For Beginners written by Prof John Smith and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with categories.
DATA SCIENCE FOR BEGINNERS Introduction to Data Science: Python,Coding, Application, Statistics,Decision Tree, Neural Network, and Linear Algebra WHAT THIS BOOK WILL DO FOR YOU We will talk about what is the need for data science and then what exactly is data science some definitions and understand. The differences between data science and business intelligence,Then we will talk about the prerequisites for learning data science, and then what does the data scientist do. What are the activities performed by a data scientist as a part of his daily life and then we will talk about the data science lifecycle witha quick example and briefly touch upon the demand or ever-increasing demand for data scientist. Benefits of Data science Data Science: Automobile Data science: Aviation Data science can also be used to make promotional offers. Chapters Data science: Its Advantage Data science: Its Definition Process in data science Difference between business intelligence and data science Prerequisites for data science Machine learning. Data science: Tools and skills in data science. Data Science: Machine-learning algorithms Data science: Life cycle of a data science Data science: Exploratory data analysis Data science: Techniques for exploratory data analysis
Statistics For Data Science
DOWNLOAD
Author : Amrita Panjwani
language : en
Publisher: Notion Press
Release Date : 2025-07-25
Statistics For Data Science written by Amrita Panjwani and has been published by Notion Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-25 with Mathematics categories.
Statistics for Data Science: A Beginner-Friendly Guide to Concepts, Code & Clarity Author: Amrita Panjwani Senior Data Scientist Break into Data Science - with Confidence in Statistics. Struggling with statistics while learning data science or machine learning? You're not alone - and this book is your solution. This is the ideal beginner-friendly guide to statistical thinking, practical concepts, and real-world code, written for professionals, students, and non-technical learners stepping into data-driven careers. What You'll Learn: Foundational topics: distributions, probability, regression, hypothesis testing Practical insights: how real data scientists use stats in business decisions Code examples in Python that make statistical concepts actionable Clarity-first approach: visuals, analogies, and step-by-step breakdowns Why This Book Works: Designed specifically for beginners in data science, AI, or analytics Written in plain language by an experienced trainer and practitioner Blends theory, application, and business relevance Helps you connect the dots - from numbers to decisions Who Should Read This: Aspiring data scientists or analysts from non-technical backgrounds ML and AI learners struggling to understand the "stats part" Students preparing for interviews, projects, or coursework Professionals who want to upskill for data-informed roles Buy now and take the first step toward data science clarity.
Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer Nature
Release Date : 2024-04-12
Introduction To Data Science written by Laura Igual and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
Statistics For Data Science
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-17
Statistics For Data Science written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-17 with Computers categories.
Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-04-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data
Statistics For Data Science
DOWNLOAD
Author : Fletcher Slonski
language : en
Publisher:
Release Date : 2021-08-11
Statistics For Data Science written by Fletcher Slonski and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with categories.
Stymied by statistics? No fear? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Here's what you'll be able to do after reading this book: -Understand and use descriptive statistics -Use predictive analytics techniques to turn data into valuable information -Use different learning algorithms to optimize your efficiency -Analyze past data to predict future trends -Integrate data from different sources to conduct a full analysis -Use Python for files manipulation and handling -Conduct data mining and social media analysis -Master Python and PHP languages And so much more! If you're determined to learn statistical analysis, but intimidated by the huge amount of information and unfamiliar terminology, this guide will show you that you don't have to own a degree in data or computer science in order to develop this skill.