Download Smarter Data Science - eBooks (PDF)

Smarter Data Science


Smarter Data Science
DOWNLOAD

Download Smarter Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Smarter Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Smarter Data Science


Smarter Data Science
DOWNLOAD
Author : Neal Fishman
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-03

Smarter Data Science written by Neal Fishman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-03 with Computers categories.


Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how. Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments. When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise. By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements: Improving time-to-value with infused AI models for common use cases Optimizing knowledge work and business processes Utilizing AI-based business intelligence and data visualization Establishing a data topology to support general or highly specialized needs Successfully completing AI projects in a predictable manner Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.



Enterprise Data Science


Enterprise Data Science
DOWNLOAD
Author : Vidhur Gupta
language : en
Publisher: Educohack Press
Release Date : 2025-01-03

Enterprise Data Science written by Vidhur Gupta and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.


Enterprise Data Science: Smarter Decisions with Big Data offers a comprehensive guide to leveraging data science for actionable insights in enterprises. We explore the core principles and contemporary approaches to handling large volumes of data, emphasizing the entire data lifecycle. The book compares data science to business intelligence, highlighting their different methodologies and applications. We delve into the emerging trends in data science, showcasing how various organizations are adapting to these technologies. Topics include the integration of artificial intelligence, practical implementation of data science, and the use of modern tools like the Hadoop system. Each chapter is thoroughly revised and updated, featuring eye-catching diagrams, charts, and tables for better understanding. Designed for accessibility, this book caters to both beginners and experienced data scientists, providing a user-friendly layout and practical insights into the evolving field of data science.



Creating Value With Big Data Analytics


Creating Value With Big Data Analytics
DOWNLOAD
Author : Peter C. Verhoef
language : en
Publisher: Routledge
Release Date : 2016-01-08

Creating Value With Big Data Analytics written by Peter C. Verhoef and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-08 with Business & Economics categories.


Our newly digital world is generating an almost unimaginable amount of data about all of us. Such a vast amount of data is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organisations to leverage the information to create value. This book is a refreshingly practical, yet theoretically sound roadmap to leveraging big data and analytics. Creating Value with Big Data Analytics provides a nuanced view of big data development, arguing that big data in itself is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. By tying data and analytics to specific goals and processes for implementation, this is a much-needed book that will be essential reading for students and specialists of data analytics, marketing research, and customer relationship management.



Data Smart


Data Smart
DOWNLOAD
Author : Jordan Goldmeier
language : en
Publisher: John Wiley & Sons
Release Date : 2023-09-22

Data Smart written by Jordan Goldmeier and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-22 with Computers categories.


Want to jump into data science but don't know where to start? Let's be real, data science is presented as something mystical and unattainable without the most powerful software, hardware, and data expertise. Real data science isn't about technology. It's about how you approach the problem. In this updated edition of Data Smart: Using Data Science to Transform Information into Insight, award-winning data scientist and bestselling author Jordan Goldmeier shows you how to implement data science problems using Excel while exposing how things work behind the scenes. Data Smart is your field guide to building statistics, machine learning, and powerful artificial intelligence concepts right inside your spreadsheet. Inside you'll find: Four-color data visualizations that highlight and illustrate the concepts discussed in the book Tutorials explaining complicated data science using just Microsoft Excel How to take what you've learned and apply it to everyday problems at work and life Advice for using formulas, Power Query, and some of Excel's latest features to solve tough data problems Smart data science solutions for common business challenges Explanations of what algorithms do, how they work, and what you can tweak to take your Excel skills to the next level Data Smart is a must-read for students, analysts, and managers ready to become data science savvy and share their findings with the world.



R


R
DOWNLOAD
Author : Raghav Bali
language : en
Publisher:
Release Date : 2017-06-19

R written by Raghav Bali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-19 with Computers categories.


Find out how to build smarter machine learning systems with R. Follow this three module course to become a more fluent machine learning practitioner.About This Book* Build your confidence with R and find out how to solve a huge range of data-related problems* Get to grips with some of the most important machine learning techniques being used by data scientists and analysts across industries today* Don't just learn - apply your knowledge by following featured practical projects covering everything from financial modeling to social media analysisWho This Book Is ForAimed for intermediate-to-advanced people (especially data scientist) who are already into the field of data scienceWhat You Will Learn* Get to grips with R techniques to clean and prepare your data for analysis, and visualize your results* Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action* Solve interesting real-world problems using machine learning and R as the journey unfolds* Write reusable code and build complete machine learning systems from the ground up* Learn specialized machine learning techniques for text mining, social network data, big data, and more* Discover the different types of machine learning models and learn which is best to meet your data needs and solve your analysis problems* Evaluate and improve the performance of machine learning models* Learn specialized machine learning techniques for text mining, social network data, big data, and moreIn DetailR is the established language of data analysts and statisticians around the world. And you shouldn't be afraid to use it...This Learning Path will take you through the fundamentals of R and demonstrate how to use the language to solve a diverse range of challenges through machine learning. Accessible yet comprehensive, it provides you with everything you need to become more a more fluent data professional, and more confident with R. In the first module you'll get to grips with the fundamentals of R. This means you'll be taking a look at some of the details of how the language works, before seeing how to put your knowledge into practice to build some simple machine learning projects that could prove useful for a range of real world problems.For the following two modules we'll begin to investigate machine learning algorithms in more detail. To build upon the basics, you'll get to work on three different projects that will test your skills. Covering some of the most important algorithms and featuring some of the most popular R packages, they're all focused on solving real problems in different areas, ranging from finance to social media.This Learning Path has been curated from three Packt products:* R Machine Learning By Example By Raghav Bali, Dipanjan Sarkar* Machine Learning with R Learning - Second Edition By Brett Lantz* Mastering Machine Learning with R By Cory LesmeisterStyle and approachThis is an enticing learning path that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.



Leading With Ai And Analytics Build Your Data Science Iq To Drive Business Value


Leading With Ai And Analytics Build Your Data Science Iq To Drive Business Value
DOWNLOAD
Author : Eric Anderson
language : en
Publisher: McGraw Hill Professional
Release Date : 2020-11-23

Leading With Ai And Analytics Build Your Data Science Iq To Drive Business Value written by Eric Anderson and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-23 with Business & Economics categories.


Lead your organization to become evidence-driven Data. It’s the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what’s often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. Inside, you’ll find the essential tools to help you: Develop a strong data science intuition quotient Lead and scale AI and analytics throughout your organization Move from “best-guess” decision making to evidence-based decisions Craft strategies and tactics to create real impact Written for anyone in a leadership or management role—from C-level/unit team managers to rising talent—this powerful, hands-on guide meets today’s growing need for real-world tools to lead and succeed with data.



Smarter Decisions The Intersection Of Internet Of Things And Decision Science


Smarter Decisions The Intersection Of Internet Of Things And Decision Science
DOWNLOAD
Author : Jojo Moolayil
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-07-29

Smarter Decisions The Intersection Of Internet Of Things And Decision Science written by Jojo Moolayil and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Computers categories.


Enter the world of Internet of Things with the power of data science with this highly practical, engaging book About This Book Explore real-world use cases from the Internet of Things (IoT) domain using decision science with this easy-to-follow, practical book Learn to make smarter decisions on top of your IoT solutions so that your IoT is smart in a real sense This highly practical, example-rich guide fills the gap between your knowledge of data science and IoT Who This Book Is For If you have a basic programming experience with R and want to solve business use cases in IoT using decision science then this book is for you. Even if your're a non-technical manager anchoring IoT projects, you can skip the code and still benefit from the book. What You Will Learn Explore decision science with respect to IoT Get to know the end to end analytics stack – Descriptive + Inquisitive + Predictive + Prescriptive Solve problems in IoT connected assets and connected operations Design and solve real-life IoT business use cases using cutting edge machine learning techniques Synthesize and assimilate results to form the perfect story for a business Master the art of problem solving when IoT meets decision science using a variety of statistical and machine learning techniques along with hands on tasks in R In Detail With an increasing number of devices getting connected to the Internet, massive amounts of data are being generated that can be used for analysis. This book helps you to understand Internet of Things in depth and decision science, and solve business use cases. With IoT, the frequency and impact of the problem is huge. Addressing a problem with such a huge impact requires a very structured approach. The entire journey of addressing the problem by defining it, designing the solution, and executing it using decision science is articulated in this book through engaging and easy-to-understand business use cases. You will get a detailed understanding of IoT, decision science, and the art of solving a business problem in IoT through decision science. By the end of this book, you'll have an understanding of the complex aspects of decision making in IoT and will be able to take that knowledge with you onto whatever project calls for it Style and approach This scenario-based tutorial approaches the topic systematically, allowing you to build upon what you learned in previous chapters.



Data Science From Scratch


Data Science From Scratch
DOWNLOAD
Author : Phil J Hack
language : en
Publisher:
Release Date : 2019-11-14

Data Science From Scratch written by Phil J Hack and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-14 with categories.


Learn Data Science NOW. Stop asking yourself where and how to start. Keep reading and find out how this book can help you with your journey. Are you afraid not to understand the technical language of data science? If so, let me tell you something. We all have to start somewhere. Approaching data science can be overwhelming, not if you have in your hands the right tools since day one. Once you start, I can guarantee you, you will want to learn more and more. Data science is an interdisciplinary subject that brings together three different fields of study. All three fields lie at the intersection of business intelligence and big data. More specifically this book will take you through: Which specific tools and analysis you need to know Various aspects involved in Data Mining Types, Quality and Data Preprocessing Things you must know for machine learning to be successful Utilizations and Procedure of Data Science How to exactly set up the appropriate environment for your machine learning needs....and much more!! Even if you never approached Data Science before, you now have the chance to deeply understand every concept and become more confident in what you want to achieve next. Data Science from Scratch has been written thinking of your needs and how to help you get started. The more you wait, the harder it gets. What are you waiting for? Scroll to the top and select on the right the BUY NOW with 1-Clickbutton.



Data Science And Big Data Analytics In Smart Environments


Data Science And Big Data Analytics In Smart Environments
DOWNLOAD
Author : Marta Chinnici
language : en
Publisher: CRC Press
Release Date : 2021-07-28

Data Science And Big Data Analytics In Smart Environments written by Marta Chinnici and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Computers categories.


Most applications generate large datasets, like social networking and social influence programs, smart cities applications, smart house environments, Cloud applications, public web sites, scientific experiments and simulations, data warehouse, monitoring platforms, and e-government services. Data grows rapidly, since applications produce continuously increasing volumes of both unstructured and structured data. Large-scale interconnected systems aim to aggregate and efficiently exploit the power of widely distributed resources. In this context, major solutions for scalability, mobility, reliability, fault tolerance and security are required to achieve high performance and to create a smart environment. The impact on data processing, transfer and storage is the need to re-evaluate the approaches and solutions to better answer the user needs. A variety of solutions for specific applications and platforms exist so a thorough and systematic analysis of existing solutions for data science, data analytics, methods and algorithms used in Big Data processing and storage environments is significant in designing and implementing a smart environment. Fundamental issues pertaining to smart environments (smart cities, ambient assisted leaving, smart houses, green houses, cyber physical systems, etc.) are reviewed. Most of the current efforts still do not adequately address the heterogeneity of different distributed systems, the interoperability between them, and the systems resilience. This book will primarily encompass practical approaches that promote research in all aspects of data processing, data analytics, data processing in different type of systems: Cluster Computing, Grid Computing, Peer-to-Peer, Cloud/Edge/Fog Computing, all involving elements of heterogeneity, having a large variety of tools and software to manage them. The main role of resource management techniques in this domain is to create the suitable frameworks for development of applications and deployment in smart environments, with respect to high performance. The book focuses on topics covering algorithms, architectures, management models, high performance computing techniques and large-scale distributed systems.



Data Smart


Data Smart
DOWNLOAD
Author : John W. Foreman
language : en
Publisher: John Wiley & Sons
Release Date : 2013-10-31

Data Smart written by John W. Foreman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-31 with Business & Economics categories.


Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.